Preview

Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice

Advanced search

A logistic regression-based model to predict ICU mortality: problems and solutions

https://doi.org/10.37489/2588-0519-2022-2-13-20

Abstract

The ICU department’s mortality rate is one of the most important indicators of quality of care. Based on real clinical data, we attempted to build a prognostic model for patients with blood diseases in the ICU with using of the logistic regression method. The study included 202 patients in total. The median age was 57 (19–82) years. There were 112 (55 %) males and 90 (45 %) females. The statistical analysis was performed by using R software, version 3.4.2. The absolute risk of death (mortality rate) was 67 from 202 (33 %), odds — 0.496. The odds of death in ICU grow up to ~20 times if the patient has a Glasgow score of less than 15. Also, the odds of death increase by 1.3 and 11 times of PLT, or serum total protein level decreases by 2 times accordingly. Our model for “high-risk of death” detection classified patients in the test dataset with 0.816 accuracy (95 % CI 0.679–0.912), with sensitivity 0.823, and specificity 0.80. Despite the simple method for data analysis, we got a pretty accurate model of mortality prognosis with efficacy more than qSOFA and MEWS scales. Research in this area should continue.

About the Authors

A. S. Luchinin
Kirov Research Institute of Hematology and Blood Transfusion under the Federal Medical Biological Agency
Russian Federation

Alexander S. Luchinin - PhD, Cand. Sci. Med., Senior Researcher of the Department of Organization and Support of Scientific Research, KRIHBT.

Kirov.



A. V. Lyanguzov
Kirov Research Institute of Hematology and Blood Transfusion under the Federal Medical Biological Agency
Russian Federation

Alexey V. Lyanguzov - PhD, Cand. Sci. Med., KRIHBT.

Kirov.



References

1. Lee J, Dubin JA, Maslove DM. Mortality Prediction in the ICU // Secondary Analysis of Electronic Health Records / ed. MIT Critical Data. Cham: Springer International Publishing, 2016. P. 315–324.

2. Pirracchio R, Petersen ML, Carone M, et al. Mortality prediction in the ICU: can we do better? Results from the Super ICU Learner Algorithm (SICULA) project, a population-based study. Lancet Respir Med. 2015;3(1):42– 52. doi: 10.1016/S2213-2600(14)70239-5

3. Awad A, Bader-El-Den M, McNicholas J, et al. Predicting hospital mortality for intensive care unit patients: Time-series analysis. Health Informatics J. SAGE Publications Ltd, 2020;26(2):1043–59. doi: 10.1177/1460458219850323

4. Schober P, Vetter TR. Logistic Regression in Medical Research. Anesth Analg. 2021;132(2):365–6. doi: 10.1213/ANE.0000000000005247

5. Ahmed SN, Jhaj R, Sadasivam B, et al. Reversal of hypertensive heart disease: a multiple linear regression model. Discoveries (Craiova). 2021;9(4):e138.

6. Lunt M. Introduction to statistical modelling 2: categorical variables and interactions in linear regression. Rheumatology (Oxford). 2015;54(7):1141–4. doi: 10.1093/rheumatology/ket172

7. Serdar CC, Cihan M, Yücel D, et al. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med (Zagreb). 2021;31(1):010502. doi: 10.11613/BM.2021.010502

8. Jenkins DG, Quintana-Ascencio PF. A solution to minimum sample size for regressions. PLoS One. 2020;15(2):e0229345. doi: 10.1371/journal.pone.0229345

9. Wilson Van Voorhis CR, Morgan BL. Understanding Power and Rules of Thumb for Determining Sample Size. TQMP. 2007;3(2):43–50. doi: 10.20982/tqmp.03.2.p043

10. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9. doi: 10.1016/s0895-4356(96)00236-3

11. Bujang MA, Sa’at N, Sidik TMITAB, Joo LC. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays J Med Sci. 2018;25(4):122–30. doi: 10.21315/mjms2018.25.4.12

12. Ajana S, Acar N, Bretillon L, et al. Benefits of dimension reduction in penalized regression methods for high-dimensional grouped data: a case study in low sample size. Bioinformatics. 2019;35(19):3628–34. doi: 10.1093/bioinformatics/btz135

13. Santana AC, Barbosa AV, Yehia HC, et al. A dimension reduction technique applied to regression on high dimension, low sample size neurophysiological data sets. BMC Neurosci. 2021;22(1):1. doi: 10.1186/s12868-020-00605-0

14. Ishwaran H, O’Brien R. Commentary: The problem of class imbalance in biomedical data. J Thorac Cardiovasc Surg. 2021;161(6):1940–1. doi: 10.1016/j.jtcvs.2020.06.052

15. Ameringer S, Serlin RC, Ward S. Simpson’s Paradox and Experimental Research. Nurs Res. 2009;58(2):123–7. doi: 10.1097/NNR.0b013e318199b517

16. Senaviratna NaMR, Cooray TMJA. Diagnosing Multicollinearity of Logistic Regression Model. Asian Journal of Probability and Statistics. 2019;1– 9. doi: 10.9734/ajpas/2019/v5i230132

17. Cutanda Henríquez F. [Outliers and robust logistic regression in Health Sciences]. Rev Esp Salud Publica. 2008;82(6):617–25. doi: 10.1590/s1135-57272008000600003

18. Zhang Y, Zhou X, Wang Q, et al. Quality of reporting of multivariable logistic regression models in Chinese clinical medical journals. Medicine (Baltimore). 2017;96(21):e6972. doi: 10.1097/MD.0000000000006972

19. Altman DG, Vergouwe Y, Royston P, et al. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338:b605. doi: 10.1136/bmj.b605

20. Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol. 1996;49(8):907–16. doi: 10.1016/0895-4356(96)00025-x

21. Zhang Z. Variable selection with stepwise and best subset approaches. Ann Transl Med. 2016;4(7):136. doi: 10.21037/atm.2016.03.35

22. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385–95. doi: 10.1002/(sici)1097-0258(19970228)16:4>385::aid-sim380<3.0.co;2-3

23. Musoro JZ, Zwinderman AH, Puhan MA, et al. Validation of prediction models based on lasso regression with multiply imputed data. BMC Med Res Methodol. 2014;14:116. doi: 10.1186/1471-2288-14-116

24. Dziak JJ, Coffman DL, Lanza ST, et al. Sensitivity and specificity of information criteria. Brief Bioinform. 2020;21(2):553–65. doi: 10.1093/bib/bbz016

25. Kim JH. Multicollinearity and misleading statistical results. Korean J Anesthesiol. 2019;72(6):558–69. doi: 10.4097/kja.19087

26. Li B, Martin EB, Morris AJ. Box–Tidwell transformation based partial least squares regression. Computers & Chemical Engineering. 2001;25(9):1219–33.

27. Nattino G, Pennell ML, Lemeshow S. Assessing the goodness of fit of logistic regression models in large samples: A modification of the Hosmer-Lemeshow test. Biometrics. 2020;76(2):549–60. doi: 10.1111/biom.13249

28. Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biom J. 2005;47(4):458–72. doi: 10.1002/bimj.200410135

29. Abdullah SMOB, Grand J, Sijapati A, et al. qSOFA is a useful prognostic factor for 30-day mortality in infected patients fulfilling the SIRS criteria for sepsis. Am J Emerg Med. 2020;38(3):512–6. doi: 10.1016/j.ajem.2019.05.037

30. Roney JK, Whitley BE, Maples JC, et al. Modified early warning scoring (MEWS): evaluating the evidence for tool inclusion of sepsis screening criteria and impact on mortality and failure to rescue. J Clin Nurs. 2015;24(23–24):3343– 54. doi: 10.1111/jocn.12952

31. Luchinin AS. Artificial Intelligence in Hematology. Clinical oncohematology. 2022;15(1):16–2. (In Russ). doi: 10.21320/2500-2139-2022-15-1-16-27


Review

For citations:


Luchinin A.S., Lyanguzov A.V. A logistic regression-based model to predict ICU mortality: problems and solutions. Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice. 2022;(2):13-20. (In Russ.) https://doi.org/10.37489/2588-0519-2022-2-13-20

Views: 2772


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2588-0519 (Print)
ISSN 2618-8473 (Online)