Individual features of the pharmacokinetics of fludarabin phosphate in the treatment of patients with chronic lymphocytic leukemia
https://doi.org/10.37489/2588-0519-2021-2-67-77
Abstract
Fludarabine is a purine antimetabolite with a pronounced immunosuppressive effect. The inhibitory effect of fludarabine depends on its concentration in blood plasma. In addition, the phenotypic characteristics of patients affect the pharmacokinetic and pharmacodynamic profile of the drug, which necessitates a personalized approach to the dosage regimen. The chromatography-mass spectrometric method for the quantitative determination of 2-fluorine in blood plasma was developed for studying the individual parameters of pharmacokinetics of the international non-proprietary name (INN) fludarabine in patients with B-cell chronic lymphocytic leukemia during the standard course. Such method for the quantitative determination of 2-fluorine in blood plasma was developed and validated in accordance with international requirements. Significant individual variability of the main pharmacokinetic parameters in patients with B-cell chronic lymphocytic leukemia with a single oral administration of the drug with INN fludarabine at a dose of 40 mg/m2 was established, so the coefficient of variability Cmax was 42 %, Tmax — 92 %, AUC0-t — 45 %, Kel — 23 %, T1/2 — 26 %. It should be noted that there is a high interindividual variability of fludarabine, for example, 24 hours after taking the study drug, the maximum and minimum plasma concentrations of the fludarabine metabolite 2-fluoro-ara-A in different in patients with B-cell chronic lymphocytic leukemia differed 9 times. Individual variability of pharmacokinetic parameters characterizing absorption (Cmax/AUC0-t) and total clearance of the active metabolite of fludarabine is statistically significantly associated with a combination of gender and anthropometric factors.
About the Authors
G. G. RodionovRussian Federation
Rodionov Gennady G., Dr. Sci. (Med.), Associate Professor, Head of the Research Laboratory of Toxicology and Drug Monitoring of the Research Department of Bioindication, Leading Researcher. SPIN code: 6471-3933
St. Peterburg
I. I. Shantyr
Russian Federation
Shantyr Igor I., Dr. Sci. (Med.), professor, Head of the Research Department of Bioindication. SPIN code: 8038-2999
St. Peterburg
V. B. Vasilyuk
Russian Federation
Vasilyuk Vasiliy B., Dr. Sci. (Med.), professor of the Department of Toxicology, Extreme and Diving Medicine North-Western State Medical University named after I.I. Mechnikov; Managing The Limited Liability Company «Research center Eco-safety». SPIN code: 1459-5548
St. Peterburg
E. A. Kolobova
Russian Federation
Kolobova Ekaterina A., Cand. Sci. Chemical, Senior Researcher of the Research Laboratory of Toxicology and Drug Monitoring of the Research Department of Bioindication. SPIN code: 6323-8882
St. Peterburg
E. V. Svetkina
Russian Federation
Svetkina Ekaterina V., doctor of clinical laboratory diagnostics of the Laboratory of Cytological, Hematological and general clinical research methods of the Department of Laboratory Diagnostics. SPIN code: 4224-5518
St. Peterburg
M. V. Faraponova
Russian Federation
Faraponova Maria V., deputy Manager for Scientific Work. SPIN code: 9006-2074
St. Peterburg
A. B. Verveda
Russian Federation
Verveda Aleksey B., Cand. Sci. (Med.), Leading Researcher, Laboratory of Drug Toxicology, Golikov Research Center of Toxicology; Senior Researcher of Scientific Work The Limited Liability Company «Research center Eco-safety»
St. Peterburg
G. I. Syraeva
Russian Federation
Syraeva Gulnara I., deputy Quality Manager The Limited Liability Company «Research center Eco-safety»; fulltime postgraduate student of the Department of Clinical Pharmacology and Evidence-Based Medicine FSBEI HE I.P. Pavlov SPbSMU MOH Russia. SPIN code: 9650-5671
St. Peterburg
K. A. Zakharov
Russian Federation
Zakharov Konstantin A., deputy Manager. SPIN code: 2537-4635
St. Peterburg
References
1. Baranov VS, Baranova EV, Ivashchenko TE, Aseev MV. Genom cheloveka i geny «predraspolozhennosti». Vvedenie v prediktivnuyu meditsinu. Saint Petersburg: Intermedika; 2000. (In Russ).
2. Kukes VG. Metabolizm lekarstvennykh sredstv: kliniko-farmakologicheskie aspekty. Moscow: Reafarm; 2004. (In Russ).
3. Kukes VG, Grachev SV, Sychev DA, Ramenskaya GV. Metabolizm lekarstvennykh sredstv: nauchnye osnovy personalizirovannoi meditsiny. Moscow: GEOTAR-Media; 2008. (In Russ).
4. The rules for conducting bioequivalence studies of medicinal products within the framework of the Eurasian Economic Union, approved by the Decision of the Council of the Eurasian Economic Commission of November 3, 2016 №. 85 Доступно по: http://docs.cntd.ru/document/456026107 Ссылка активна на 01.06.2021.
5. Bogni A, Monshouwer M, Moscone A, Hidestrand M, IngelmanSundberg M, Hartung T, Coecke S. Substrate specific metabolism by polymorphic cytochrome P450 2D6 alleles. Toxicol in Vitro. 2005:19(5):621-9. doi: 10.1016/j.tiv.2005.04.001.
6. Nicholson JK, Wilson ID. Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov. 2003;2(8):668-76. doi: 10.1038/nrd1157.
7. Sychev DA. Klinicheskaya farmakogenetika kak put’ k personalizirovannoi meditsine: opravdany li nadezhdy? Klinicheskaya farmakologiya i terapiya. 2005;14(5):77-83. (In Russ).
8. Karabekova BA. Personalized medicine. The path to effective and safe pharmacotherapy. Science, technology and education. 2018;3(44):66-68. (In Russ).
9. Jain KK. Personalised medicine for cancer: from drug development into clinical practice. Expert Opin Pharmacother. 2005;6(9):1463-76. doi: 10.1517/14656566.6.9.1463
10. WHO. Int [Internet]. World Health Organization Available from: https://www.who.int/bulletin/archives/79(4)373.pdf
11. Сancer.gov [Internet]. U.S. National Cancer Institute at the National Institutes of Health Available from: https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match
12. Ivaturi V, Dvorak CC, Chan D, Liu T, Cowan MJ, Wahlstrom J, LongBoyle J. Pharmacokinetics and model-based dosing to optimize fludarabine therapy in pediatric hematopoietic cell transplant recipients. Biol Blood Marrow Transplant. 2017;23(10):1701-1713. doi: 10.1016/j.bbmt.2017.06.021.
13. Instructions for the medical use of the drug fludarabine ® (In Russ). Доступно по: http://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=0a4eb8fc8b89-40ff-82e9-fb59c9fd90e5&t=Ссылка активна на 01.06.2021.
14. Medicines.org.uk [Internet]. EMA. Arch Intern Med., 15, 868-881 (1915)., Fludara oral 10 mg film-coated tablet. Available from: https://www.medicines.org.uk/emc/product/1288/smpc
15. Punt AM, Langenhorst JB, Egas AC, Boelens JJ, van Kesteren C, van Maarseveen EM. Simultaneous quantification of busulfan, clofarabine and F-ARA-A using isotope labelled standards and standard addition in plasma by LC—MS/MS for exposure monitoring in hematopoietic cell transplantation conditioning. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1055-1056:81-85. doi: 10.1016/j.jchromb.2017.04.025.
16. Guidline on bioanalytical method validation [Internet]. EMEA/ CHMP/EWP/192217/2009 Rev/1 Corr.2,21.07.2011. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guidelinebioanalytical-method-validation_en.pdf.
17. Huang L, Lizak P, Dvorak CC, Aweeka F, Long-Boyle J. Simultaneous determination of fludarabine and clofarabine in human plasma by LC—MS/ MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;960:194-9. doi: 10.1016/j.jchromb.2014.04.045.
18. Ng ESM, Kangarloo SB, Daly A. Improved quantitative method for fludarabine in human plasma by liquid chromatography and tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;931:103-10. doi: 10.1016/j.jchromb.2013.05.012.
19. Zhang Y, Huo M, Zhou J, Xie S. JCm, biomedicine pi PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306-14. doi: 10.1016/j.cmpb.2010.01.007.
20. Miroshnichenko II. Osnovy farmakokinetiki. Moscow: GEOTAR-MED; 2002. (In Russ).
21. Adane ED, Herald M, Koura F. Pharmacokinetics of Vancomycin in extremely obese patients with suspected or confirmed staphylococcus aureus infections. Pharmacotherapy. 2015;35(2):127-39. doi: 10.1002/phar.1531.
22. Ramenskaya GV, Shokhin IE, Lukina MV, Andrushchyshina TB, Chukina MA, Tsarev IL, Vartanova OA, Morozova TE. Mathematical modeling of vancomomycin pharmacokinetics parameters: opportunities and comparison with the results of therapeutic drug monitoring. Journal Biomed. 2018;(4):51-62. (In Russ).
23. Pal’tsev M. A., Belushkina N.N. Nauchnye osnovy effektivnosti i bezopasnosti lekarstvennykh sredstv / Materialy Nauchnoi sessii Obshchego sobraniya chlenov RAN «Nauchnye osnovy effektivnosti i bezopasnosti lekarstvennykh sredstv»; Dekabrya 8, 2015; Moscow. (In Russ). Доступно по: https://istina.msu.ru/collections/155590118/ Ссылка активна на 01.06.2021
24. Bondareva I.B. Matematicheskoe modelirovanie v farmakokinetike i farmakodinamike: Avtoref. dis. … d-ra biol. nauk. Moscow: 2001. (In Russ). Доступно по: https://elibrary.ru/item.asp?id=19171468
25. Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, Nicholson JK. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature. 2006; 440(7087):1073-7. doi: 10.1038/nature04648.
Review
For citations:
Rodionov G.G., Shantyr I.I., Vasilyuk V.B., Kolobova E.A., Svetkina E.V., Faraponova M.V., Verveda A.B., Syraeva G.I., Zakharov K.A. Individual features of the pharmacokinetics of fludarabin phosphate in the treatment of patients with chronic lymphocytic leukemia. Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice. 2021;(2):67-77. (In Russ.) https://doi.org/10.37489/2588-0519-2021-2-67-77