Preview

Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice

Advanced search

Analysis of current approaches to the diagnosis and treatment of severe bronchial asthma

https://doi.org/10.37489/2588-0519-2025-3-86-96

EDN: CHWNBK

Abstract

This review analyzes modern approaches to the diagnosis and treatment of severe bronchial asthma (SBA), characterized by a transition to personalized medicine. The need to improve therapy for SBA is driven by its increasing prevalence and high resource consumption. This study examined the role of genetic polymorphisms in predisposition, disease course, and therapy response. Considerable attention is paid to pharmacogenetics, highlighting key genetic markers that influence the efficacy of basic bronchial asthma drugs (beta-agonists, inhaled corticosteroids, and leukotriene modifiers) and the possibility of personalizing the choice of biological therapy. A significant part of the review focused on monoclonal antibodies (omalizumab, mepolizumab, reslizumab, benralizumab, dupilumab, and tezepelumab), which represent a targeted approach to the treatment of SBA. The key predictors of treatment effectiveness (e. g., blood eosinophil level, IgE, FeNO, and exacerbation frequency) were analyzed for each group of biological drugs, and the importance of early initiation of therapy was emphasized to achieve maximum effect and prevent airway remodeling. Conclusion: The paradigm shift in SBA management through biological therapy, including achieving clinical remission and reducing the need for systemic corticosteroids, enables effective control in a significant proportion of patients with severe forms of the disease.

About the Authors

O. N. Soldatova
Yaroslavl State Medical University
Russian Federation

Olga N. Soldatova — Cand. Sci. (Med), Associate Professor of the Department of Pharmacology and Clinical Pharmacology

Yaroslavl


Competing Interests:

The authors declare no conflict of interest



A. L. Khokhlov
Yaroslavl State Medical University
Russian Federation

Alexander L. Khokhlov — Dr. Sci (Med.), Professor, Academician of the Russian Academy of Sciences, Head of the Department of Pharmacology and Clinical Pharmacology, Rector 

Yaroslavl


Competing Interests:

The authors declare no conflict of interest



A. V. Zaborovskiy
N. A. Semashko Scientific and Educational Institute of Clinical Medicine, Russian University of Medicine
Russian Federation

Andrey V. Zaborovskiy — Dr. Sci (Med.), Associate Professor, Head of the Department of Pharmacology, Vice-Rector

Moscow


Competing Interests:

The authors declare no conflict of interest



References

1. Clinical guidelines "Bronchial asthma" (approved by the Ministry of Health of the Russian Federation, 2024) (In Russ.). Доступно по https://cr.minzdrav.gov.ru (опубликовано 15.11.2024).

2. Bonta PI, Chanez P, Annema JT, et al. Bronchial thermoplasty in severe asthma: best practice recommendations from an expert panel. Respiration. 2018;95(5):289-300. doi: 10.1159/000488291.

3. Avdeev S.N., Shabanov E.A., Kudelya L.M., et al. Resolution of advisory board on issues in the diagnosis of asthma and COPD: current challenges and modern approaches to their resolution. Terapevticheskii arkhiv. 2024;(96)8:846-851 (In Russ.). doi: 10.26442/00403660.2024.08.202949.

4. Association of Russian-Speaking Respiratory Medicine Specialists. Russian Respiratory Society. Russian Association of Allergists and Clinical Immunologists. Consensus Report of the Joint Expert Group. Severe Bronchial Asthma. – 2018 – 25 p.

5. Moiseenko V.M. Monoclonal antibodies in the treatment of malignant tumors. Practical oncology. 2003;4(3):148-156. (In Russ.).

6. Malyavin A.G., Kozulina I.E., Sharapova Yu.A. Five molecules for targeted biological therapy of severe bronchial asthma: realities and prospects. Therapy. 2020;5:195-205. (In Russ.). DOI: https://dx.doi.org/10.18565/therapy.2020.5.195-205.

7. Kardas G, Panek M, Kuna P, et al. Monoclonal antibodies in the management of asthma: Dead ends, current status and future perspectives. Front Immunol. 2022;13:983852. doi: 10.3389/fimmu.2022.983852.

8. Hansen S, Baastrup Søndergaard M, von Bülow A, et al. Clinical response and remission in patients with severe asthma treated with biologic therapies. Chest. 2024;165(2):253-266. doi: 10.1016/j.chest.2023.10.046.

9. Kulichenko DS, Pavlova KS, Kurbacheva OM, et al. Allergy immunotherapy in combination with biological therapy in moderate and severe asthma. Clinical review in general medicine. 2023;4(8): 13-23. (In Russ.). DOI: 10.47407/kr2023.4.8.00326.

10. Bekmagambetova R.B., Ispaeva Zh.B., Mustafina M.O., Zhakieva A.B., Dzhanabaeva N.B. The role of genetic factors in the development of bronchial asthma (review). Bulletin KAZNMU. 2022;3(62):98-112. (In Russ.). DOI: 10.53065/kaznmu.2022.81.35.010.

11. Thomsen SF, van der Sluis S, Kyvik KO, Skytthe A, Backer V. Estimates of asthma heritability in a large twin sample. Clin Exp Allergy. 2010;40:1054–61. doi: 10.1111/j.1365-2222.2010.03525.x.

12. Baek EJ, Jung HU, Ha TW, et al. Genome-wide interaction study of late-onset asthma with seven environmental factors using a structured linear mixed model in europeans. Front Genet. 2022;13:765502. doi: 10.3389/fgene.2022.765502.

13. Ferreira MAR, Mathur R, Vonk JM, et al. Genetic architectures of childhood- and adult-onset asthma are partly distinct. Am J Hum Genet. 2019;104(4):665-684. doi: 10.1016/j.ajhg.2019.02.022.

14. Smolnikova M.V., Kasparov E.V., Malinchik M.A., Kopylova K.V. Genetic markers of bronchial asthma in children: predisposition to disease progression variants. Vavilov Journal of Genetics and Breeding. 2023;27(4):393-400. (In Russ.). DOI: 10.18699/VJGB-23-47.

15. Suprun EN, Suprun SV, Nagovitsina EB, Galyant OI, Lebedko OA. Clinical and immunological manifestations of gene polymorphisms cytokines in controlled and uncontrolled bronchial asthma. Meditsinskiy sovet = Medical Council. 2024;(1):228–239. (In Russ.). doi.org/10.21518/ms2023-498.

16. de Paiva, A.C.Z., Marson, F.A.d.L., Ribeiro, J.D. et al. Asthma: Gln27Glu and Arg16Gly polymorphisms of the beta2-adrenergic receptor gene as risk factors. All Asth Clin Immun 2014;10(1):8. doi. org/10.1186/1710-1492-10-8.

17. Isidoro-García, M., Dávila, I., Laffond, E. et al. Interleukin-4 (IL4) and Interleukin-4 receptor (IL4RA) polymorphisms in asthma: a case control study. Clin Mol Allergy 2005;3, 15. doi.org/10.1186/1476-7961-3-15.

18. Yakovleva O.A., Kosovan A.I., Dyakova O.V., Czaruk V.V. Genotypic and phenotypic polymorphism of N-acetyltransferases as predictors of bronchopulmonary diseases. Pulmonology. 2003;(4):115-121. (In Russ.).].

19. Odimba U, Senthilselvan A, Farrell J, Gao Z. Identification of Sex-Specific Genetic Polymorphisms Associated with Asthma in Middle-Aged and Older Canadian Adults: An Analysis of CLSA Data. J Asthma Allergy. 2023;16:553-566. doi.org/10.2147/JAA.S404670.

20. Moffatt MF, Gut IG, Demenais F, et al. GABRIEL Consortium. A largescale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211-1221. doi: 10.1056/NEJMoa0906312.

21. Ahmerova Yu. N., Shpakova T. A., Grammatikati K. S., et.al. Genetic variants associated with bronchial asthma, specific to the population of the Russian Federation. Acta naturae. 2023;15(1):31-41. (In Russ.). DOI: 10.32607/actanaturae.11853.

22. Kim S, Forno E, Yan Q, et al. SNPs identified by GWAS affect asthma risk through DNA methylation and expression of cisgenes in airway epithelium. Eur Respir J. 2020;55(4):1902079. doi: 10.1183/13993003.02079-2019.

23. Zastrozhina AK, Zakharova IN, Sychev DA, et al. Impact of CYP3A5 (6986A>G) and ABCB1 (3435C>T) gene polymorphism on the efficacy of anti-asthmatic therapy in children. Klinicheskaya farmakologiya I terapiya = Clin Pharmacol Ther 2019;28(3):75-78. (In Russ.). DOI 10.32756/0869-5490-2019-3-75-78.

24. Rijavec M, Žavbi M, Lopert A, Fležar M, Korošec P. GLCCI1 polymorphism rs37973 and response to treatment of asthma with inhaled corticosteroids. J Investig Allergol Clin Immunol. 2018;28(3):165-171. doi: 10.18176/jiaci.0229

25. Slob EMA, Vijverberg SJH, Palmer CNA, et al. Pharmacogenetics of inhaled long-acting beta2-agonists in asthma: A systematic review. Pediatr Allergy Immunol. 2018;29(7):705-714. doi: 10.1111/pai.12956.

26. Karimi L, Vijverberg SJH, Farzan N, et al. FCER2 T2206C variant associated with FENO levels in asthmatic children using inhaled corticosteroids: The PACMAN study. Clin Exp Allergy. 2019;49(11):1429-1436. doi: 10.1111/cea.13460.

27. Tantisira KG, Lake S, Silverman ES, et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum Mol Genet. 2004;13(13):1353-9. doi: 10.1093/hmg/ddh149.

28. Telleria JJ, Blanco-Quiros A, Varillas D, et al. ALOX5 promoter genotype and response to montelukast in moderate persistent asthma. Respir Med. 2008;102(6):857-61. doi: 10.1016/j.rmed.2008.01.011.

29. Kazani S, Wechsler ME, Israel E. The role of pharmacogenomics in improving the management of asthma. J Allergy Clin Immunol. 2010;125(2):295-302; doi: 10.1016/j.jaci.2009.12.014.

30. Rojo-Tolosa, S.; Sánchez-Martínez, J.A.; Pineda-Lancheros, L.E.; et al. Influence of genetics on the response to omalizumab in patients with severe uncontrolled asthma with an allergic phenotype. Int. J. Mol. Sci. 2023;24:7029. doi.org/10.3390/ijms24087029.

31. Rojo-Tolosa S, Sánchez-Martínez JA, Caballero-Vázquez A, et al. Single nucleotide polymorphisms as biomarkers of mepolizumab and benralizumab treatment response in severe eosinophilic asthma. Int J Mol Sci. 2024;25(15):8139. doi: 10.3390/ijms25158139.

32. Corren J, Pham TH, Garcia Gil E, et al. Baseline type 2 biomarker levels and response to tezepelumab in severe asthma. Allergy. 2022;77(6):1786- 1796. doi: 10.1111/all.15197.

33. Perez-de-Llano L, Scelo G, Tran TN, et al. Exploring definitions and predictors of severe asthma clinical remission after biologic treatment in adults. Am J Respir Crit Care Med. 2024;210(7):869-880. doi: 10.1164/rccm.202311-2192OC.

34. Couillard S, Jackson DJ, Pavord ID, Wechsler ME. Choosing the right biologic for the right patient with severe asthma. Chest. 2025;167(2):330- 342. doi: 10.1016/j.chest.2024.08.045.

35. Kalugina Vera G., Vishneva Elena A., Namazova-Baranova Leyla S. Efficiency of adding omalizumab to standard therapy for children with recurrent spontaneous urticaria: comparative observational study. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2020;17(3):179– 186. (In Russ.). doi: 10.15690/pf.v17i3.2122.

36. Zuberbier T, Aberer W, Asero R, et al. The EAACI/GA²LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy. 2018;73(7):1393–1414. doi:10.1111/all.13397.

37. Kamaev A.V., Makarova I.V., Trusova O.V. Criteria for pediatric patients selection for omalizumab basic therapy as the main factor in the long-term control of severe bronchial asthma. Pediatria. 2018;97(2):61-67. (In Russ.). DOI: 10.24110/0031-403X-2018-97-2-61-67.

38. Kinyajkin M.F., Danilenko S.A., Xizhnyak Yu.Yu., Naumova I.V. The role of the anti-IL-5Rα drug benralizumab in the treatment of severe bronchial asthma. Farmateka. 2020;5:58-64. (In Russ.). DOI: https://dx.doi.org/10.18565/.

39. Senna G, Aliani M, Altieri E, et al. Clinical features and efficacy of benralizumab in patients with blood eosinophil count between 300 and 450 cells/mm3 : a post hoc analysis from the ANANKE study. J Asthma Allergy. 2022;15:1593-1604. doi: 10.2147/JAA.S383012.

40. Nenasheva N.M., Fedosenko S.V., Barabanova E.N. Efficacy and safety of mepolizumab for patients with bronchial asthma in real-world clinical practice. Farmateka. 2020;10:125-132. (In Russ.). DOI: https://dx.doi.org/10.18565/pharmateca.2020.10. 125- 132.

41. Ignatova G.L., Antonov V.N. Selecting a targeted therapy drug for patients with severe eosinophilic asthma: focus on reslizumab. Poliklinika. 2020;3:30-35. (In Russ.).

42. Pham TH, Damera G, Newbold P, Ranade K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir Med. 2016;111:21-9. doi: 10.1016/j.rmed.2016.01.003.

43. Jackson DJ, Hamelmann E, Roberts G, et al. Dupilumab efficacy and safety in children with moderate to severe asthma and high blood eosinophils: a post hoc analysis of VOYAGE. J Allergy Clin Immunol Pract. 2025;13(3):568-575. doi: 10.1016/j.jaip.2024.11.014.

44. Brooks GD. Updated evaluation of dupilumab in the treatment of asthma: patient selection and reported outcomes. Ther Clin Risk Manag. 2020;16:181-187. doi: 10.2147/TCRM.S192392.

45. Mümmler C, Lenoir A, Götschke J, et al. Long-term outcomes of dupilumab therapy in severe asthma: A retrospective, multicenter, real-world study. J Allergy Clin Immunol Global 2025;4(4):100533. doi.org/10.1016/j.jacig.2025.100533.

46. Corren J, Pham TH, Garcia Gil E, et al. Baseline type 2 biomarker levels and response to tezepelumab in severe asthma. Allergy. 2022;77(6):1786- 1796. doi: 10.1111/all.15197.

47. ISAR Study Group. International Severe Asthma Registry: mission statement. Chest. 2020;157:805–814. doi: 10.1016/j.chest.2019.10.051.

48. Cushen B, Koh MS, Tran TN, et al. ISAR Inventory Study Group Adult severe asthma registries: a global and growing inventory. Pragmat Obs Res. 2023;14:127–147. doi: 10.2147/POR.S399879.

49. Scelo G, Tran TN, Le TT, et al. Exploring definitions and predictors of response to biologics for severe asthma. J Allergy Clin Immunol Pract. 2024;12(9):2347-2361. doi: 10.1016/j.jaip.2024.05.016.

50. Titova ON, Volchkov VA, Kuzubova NA, Sklyarova DB. The problem of choosing a genetically engineered biological drug in a patient with severe bronchial asthma. Meditsinskiy sovet = Medical Council. 2023;(23):128-132. (In Russ.). https://doi.org/10.21518/ms2023-471.

51. Shogenova MS, Hutueva SH, Shogenova LS. The effectiveness of targeted therapy of various genetically engineered biological drugs in the treatment of bronchial asthma. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(12):1112–1118. (In Russ.). DOI: 10.26442/00403660.2023.12.202491.

52. Alkaabi MMS, Rabbani SA, Rao PG, Mohamedelhassan MI. Treatment patterns and factors associated with discontinuation of monoclonal antibodies. SAGE Open Med. 2024 ;12:20503121241271817. doi: 10.1177/20503121241271817.

53. Lauret S, Noel-Savina E, Prévot G, et al. Are serum immunoglobulin concentrations a predictive biomarker of response to anti-IL5/ IL5Rα therapies? Respir Med Res. 2022;81:100882. doi: 10.1016/j.resmer.2021.100882.

54. GINA. Global Strategy for Asthma Management and Prevention. 2025; URL: https://ginasthma.org/2025-gina-strategy-report/.

55. Zhang Y, Xi L, Gao Y, et al. Omalizumab is effective in the preseasonal treatment of seasonal allergic rhinitis. Clin Transl Allergy. 2022;12(1):e12094. doi: 10.1002/clt2.12094.

56. Chen J, Ou S, Wu W, et al. Omalizumab in chronic spontaneous urticaria: a real-world study on effectiveness, safety and predictors of treatment outcome. Clin Cosmet Investig Dermatol. 2024;17:1799-1808. doi: 10.2147/CCID.S470160.

57. Miczkevich S.E., Fedorov I.A., Chuprynina A.I., Rybakova O.G. Experience with omalizumab in the treatment of severe uncontrolled bronchial asthma in children. Doctor.Ru. 2020; 19(3): 53–56. (In Russ.)]. DOI: 10.31550/1727-2378-2020-19-3-53-56.

58. Kotsiou OS, Kirgou P, Siachpazidou D, et al. Early benefit of mepolizumab on small airways in severe asthma: insights from the IMPOSE study. ERJ Open Res. 2025;11(3):00939-2024. doi: 10.1183/23120541.00939-2024.

59. Hamada Y, Gibson PG, Harvey ES, et al. Early treatment response to mepolizumab predicts clinical remission in severe eosinophilic asthma. J Allergy Clin Immunol Pract. 2025;13(2):333-342.e9. doi: 10.1016/j.jaip.2024.10.041.

60. Emma R, Morjaria JB, Fuochi V, Polosa R, Caruso M. Mepolizumab in the management of severe eosinophilic asthma in adults: current evidence and practical experience. Ther Adv Respir Dis. 2018;12:1753466618808490. doi: 10.1177/1753466618808490.

61. Kim H, Kim MG, Kim SR, et. al. Comparative efficacy of biologics for patients with inadequately controlled asthma: A network meta-analysis. World Allergy Organ J. 2024;17(7):100934. doi: 10.1016/j.waojou.2024.100934.

62. Bjermer L, Lemiere C, Maspero J, et. al. Reslizumab for Inadequately Controlled Asthma With Elevated Blood Eosinophil Levels: A Randomized Phase 3 Study. Chest. 2016;150(4):789-798. doi: 10.1016/j.chest.2016.03.032.

63. Nolasco S, Campisi R, Intravaia R, et al. Case Report: Acute effect of benralizumab on asthma exacerbation without concomitant corticosteroid use. F1000Res. 2020;9:637. doi: 10.12688/f1000research.24603.2.

64. Ausín P, Navarrete-Rouco ME, Carazo L, et al. Early and sustained clinical benefits of benralizumab in severe eosinophilic asthma: findings from the ORBE II Study. J Clin Med. 2025;14(9):3011. doi: 10.3390/jcm14093011.

65. Papi A, Castro M, Busse WW, et al. Long-term dupilumab efficacy on severe exacerbations and lung function in patients with type 2 asthma. Ann Am Thorac Soc. 2024;21(4):675-679. doi: 10.1513/AnnalsATS.202306-544RL.

66. Corren J, Katelaris CH, Castro M, et al. Impact of exacerbation history on long-term efficacy of dupilumab in patients with asthma. ERJ Open Res. 2023;9(5):00037-2023. doi: 10.1183/23120541.00037-2023.

67. Pelaia C., Greco M., Iaccino E., et al. Short-term therapeutic effectiveness of tezepelumab in patients with severe asthma: A real-world study. International Immunopharmacology. 2025;162:115185, https://doi.org/10.1016/j.intimp.2025.115185.

68. Lugogo NL, Akuthota P, Sumino K, et al. Effectiveness and safety of tezepelumab in a diverse population of US patients with severe asthma: initial results of the PASSAGE study. Adv Ther. 2025;42(7):3334-3353. doi: 10.1007/s12325-025-03231-6.

69. Brusselle G, Riemann S. Is Efficacy of tezepelumab independent of severe asthma phenotype? Am J Respir Crit Care Med. 2023;208(1):1–3. doi: 10.1164/rccm.202304-0700ED.

70. Titova O.N., Volchkov V.A., Kuzubova N.A., Sklyarova D.B. Organization of care for patients with severe bronchial asthma requiring treatment with genetically engineered biological agents in St. Petersburg. Russian Medical Journal. Medical Review. 2023;7(8):493-497. (In Russ.). DOI: 10.32364/2587-6821-2023-7-8-3.

71. Pavlova K.S., Timoshenko D.O., Osokin A.A., et al. Personalized approach to the biologicals’ selection in patients with severe asthma: real practice tools and new possibilities. Pulmonologiya. 2024;34(6):788-800. (In Russ.). https://doi.org/10.18093/0869-0189-2024-34-6-788-800.

72. pharmmedprom.ru [internet]. Главные новости о медицинской и фармацевтической отрасли России – ФармМедПром. Доступ по ссылке https://pharmmedprom.ru/articles/novoe-v-diagnostike-i-lechenii-bronhialnoj-astmy-rossijskie-razrabotki/.

73. Fox HM, Rotolo SM. Combination Anti-IgE and Anti-IL5 therapy in a pediatric patient with severe persistent asthma. J Pediatr Pharmacol Ther. 2021;26(3):306-310. doi: 10.5863/1551-6776-26.3.306.

74. Malkina N.V., Erlygina A.S., Bolvanovich A.E., Avdeeva N.A., Vasin A.A. Comparison of the effectiveness of new biological drugs in the treatment of severe bronchial asthma. Modern problems of science and education. 2025;1. DOI: https:// doi.org/10.17513/spno.33947.


Review

For citations:


Soldatova O.N., Khokhlov A.L., Zaborovskiy A.V. Analysis of current approaches to the diagnosis and treatment of severe bronchial asthma. Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice. 2025;(3):86-96. (In Russ.) https://doi.org/10.37489/2588-0519-2025-3-86-96. EDN: CHWNBK

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2588-0519 (Print)
ISSN 2618-8473 (Online)