Approaches to reduce the uncertainty in the clinical efficacy of orphan drugs
https://doi.org/10.37489/2588-0519-2024-4-82-96
EDN: MQOHEI
Abstract
Medicinal products (MPs) for treating rare (orphan) diseases are characterized by high uncertainty regarding clinical efficacy. This uncertainty is primarily attributed to the limited number of available and completed clinical trials and inconclusive data on efficacy. The purpose of this review was to describe the main issues related to the characteristics of orphan diseases, including the characteristics of clinical trials of orphan MPs, the orphan medicines themselves, ethical issues, and suggestions for possible solutions to these problems. This review identified and described the main aspects affecting the diagnosis and treatment of rare diseases, development of orphan MPs, and quality of clinical trials. In addition, issues related to quality of life were considered.
Furthermore, some organizational and clinical solutions were suggested to reduce the uncertainty of the utilization of orphan MPs, allowing for greater clarity in their implementation in practice.
About the Authors
V. V. ОmelyanovskiyRussian Federation
Vitaliy V. Оmelyanovskiy — Dr. Sci. (Med.), Professor, Director General; Head of the Department of healthcare organization and public health with a course of health technology assessment
Moscow
S. I. Kutsev
Russian Federation
Sergey I. Kutsev — Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Director
Moscow
P. A. Mukhortova
Russian Federation
Polina A. Mukhortova — Chief Specialist of the Department of methodological support of health technology assessment
Moscow
A. G. Kharitonova
Russian Federation
Anna G. Kharitonova — Leading specialist of the Department of methodological support of health technology assessment
Moscow
A. A. Slabikova
Russian Federation
Alexandra А. Slabikova — Leading specialist of the Department of methodological support of health technology assessment
Moscow
N. V. Ignatyeva
Russian Federation
Nelli V. Ignatyeva — Cand. Sci. (Pharm.), Associate Professor
Moscow
A. A. Kingshott
Russian Federation
Anastasia A. Kingshott — Head of the Department of methodological support of health technology assessment; assistant of the Department of healthcare organization and public health with a course of health technology assessment
Moscow
T. S. Teptsova
Russian Federation
Tatiana S. Teptsova — Deputy Head of the Department of methodological support of health technology assessment; assistant of the Department of healthcare organization and public health with a course of health technology assessment
Moscow
V. O. Bogdanova
Russian Federation
Valeria O. Bogdanova — Cand. Sci. (Med.), chief specialist of the Department of organizational and methodological support of national medical research centers; associate professor of the Department of healthcare organization and public health with a course of health technology assessment
Moscow
References
1. How Orphan Drugs Came to Be Called “Orphan” [Электронный ресурс] // FDA Law Blog. URL: https://www.thefdalawblog.com/2015/02/how-orphan-drugs-came-to-be-called-orphan/ (Дата обращения: 28.09.2023).
2. Federal Law of Russian Federation of 21 November 2011 №323-FZ. “Ob osnovakh okhrany zdorov'ya grazhdan v Rossijskoj FederaciI”. (In Russ).] Доступно по: https://minzdrav.gov.ru/documents/7025-federalnyy-zakon-323-fz-ot-21-noyabrya-2011-g. Ссылка активна на 18.03.2024.
3. Rare diseases [Электронный ресурс]. URL: https://research-and-innovation.ec.europa.eu/research-area/health/rare-diseases_en (Дата обращения: 04.09.2023).
4. Rare Diseases at FDA [Электронный ресурс] // FDA, 2022. URL: https:// www.fda.gov/patients/rare-diseases-fda (Дата обращения: 04.09.2023).
5. Overview of Orphan Drug/Medical Device Designation System [Электронный ресурс]. URL: https://www.mhlw.go.jp/english/po-licy/health-medical/pharmaceuticals/orphan_drug.html (Дата обращения: 03.06.2024).
6. Decree of the President of Russian Federation of 05 January 2021 №16. "O sozdanii Fonda podderzhki detej s tyazhelymi zhizneugrozhayushchimi i khronicheskimi zabolevaniyami, v tom chisle redkimi (orfannymi) zabolevaniyami, “Krug dobra”. (In Russ).] Доступно по: http://publication.pravo.gov.ru/Document/View/0001202101060001. Ссылка активна на 18.03.2024.
7. Resolution of the Government of Russian Federation of 28 December 2023 №2353. “O Programme gosudarstvennykh garantij besplatnogo okazaniya grazhdanam medicinskoj pomoshchi na 2024 god i na planovyj period 2025 i 2026 godov”. (In Russ).] Доступно по: http://static.government.ru/media/files/vB0TvgWlcYbdAUFJomenUk3B0sjTuLA8.pdf. Ссылка активна на 18.03.2024
8. Haendel M, Vasilevsky N, Unni D, et al. How many rare diseases are there? Nat Rev Drug Discov. 2020;19(2):77–78. doi: https://doi.org/10.1038/d41573-019-00180-y.
9. Boycott KM, Rath A, Chong JX, et al. International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases. Am J Hum Genet. 2017;100(5):695–705. doi: https://doi.org/10.1016/j.ajhg.2017.04.003.
10. Nguengang Wakap S, Lambert DM, Olry A, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database: 2. Eur J Hum Genet. Nature Publishing Group, 2020;28(2):165–173. doi: https://doi.org/10.1038/s41431-019-0508-0.
11. Greene D, Pirri D, Frudd K, et al. Genetic association analysis of 77,539 genomes reveals rare disease etiologies: 3. Nat Med. Nature Publishing Group, 2023;29(3):679–688. doi: https://doi.org/10.1038/s41591-023-02211-z.
12. Brotman RG, Moreno-Escobar MC, Joseph J, et al. Amyotrophic Lateral Sclerosis // StatPearls. Treasure Island (FL): StatPearls Publishing, 2023.
13. Pahal P, Sharma S. Idiopathic Pulmonary Artery Hypertension // StatPearls. Treasure Island (FL): StatPearls Publishing, 2023.
14. Schaefer J, Lehne M, Schepers J, et al. The use of machine learning in rare diseases: a scoping review. Orphanet Journal of Rare Diseases. 2020;15(1):145. doi: https://doi.org/10.1186/s13023-020-01424-6.
15. Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038–1040. doi: https://doi.org/10.1038/s41587-019-0224-x.
16. Zanello G, Garrido-Estepa M, Crespo A, et al. Targeting shared molecular etiologies to accelerate drug development for rare diseases. EMBO Molecular Medicine. 2023;15(7):e17159. doi: https://doi.org/10.15252/emmm.202217159.
17. Adachi T, El-Hattab AW, Jain R, et al. Enhancing Equitable Access to Rare Disease Diagnosis and Treatment around the World: A Review of Evidence, Policies, and Challenges. Int J Environ Res Public Health. 2023;20(6):4732. doi: https://doi.org/10.3390/ijerph20064732.
18. Воробьев П.А. Редкие заболевания у взрослых. Проблемы стандартизации в здравоохранении. 2016;3–4:3–9. [Vorobyov PA. Redkie zabolevaniya u vzroslykh. Problemy standartizacii v zdravookhranenii. 2016;3-4:3-9 (In Russ)].
19. Groft SC, Gopal-Srivastava R, Dellon E., et al. How to Advance Research, Education, and Training in the Study of Rare Diseases. Gastroenterology. 2019;157(4):917–921. doi: https://doi.org/10.1053/j.gastro.2019.08.010.
20. Legrand MA, Bagouet F, Merle B, et al. Value of rare diseases reference centers: impact on diagnosis and access to specialized care in fibrous dysplasia of bone. European Journal of Medical Genetics. 2023;66(11):104849. doi: https://doi.org/10.1016/j.ejmg.2023.104849.
21. Vinkšel M, Writzl K, Maver A, et al. Improving diagnostics of rare genetic diseases with NGS approaches. J Community Genet. 2021;12(2):247– 256. doi: https://doi.org/10.1007/s12687-020-00500-5.
22. Hsieh T-C, Bar-Haim A, Moosa S, et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nature Genetics. 2022;54(3):349–357. doi: https://doi.org/10.1038/s41588-021-01010-x.
23. Heart Disease Prevalence - Health, United States [Электронный ресурс]. 2023. URL: https://www.cdc.gov/nchs/hus/topics/heart-disease-prevalence.htm (Дата обращения: 04.09.2023).
24. Gavin P. The importance of natural histories for rare diseases. Expert Opinion on Orphan Drugs. Taylor & Francis, 2015;3(8):855–857. doi: https://doi.org/10.1517/21678707.2015.1063415.
25. Garbade SF, Zielonka M, Komatsuzaki S, et al. Quantitative retrospective natural history modeling for orphan drug development. J Inherit Metab Dis. 2021;44(1):99–109. doi: https://doi.org/10.1002/jimd.12304.
26. Dupont AG, Van Wilder PB. Access to orphan drugs despite poor quality of clinical evidence. British Journal of Clinical Pharmacology. 2011;71(4):488–496. doi: https://doi.org/10.1111/j.1365-2125.2010.03877.x.
27. Mucopolysaccharidoses. Diagnostic Imaging: Pediatrics (Third Edition) / ed. Merrow A.C. et al. Elsevier. 2017:950–953. doi: https://doi.org/10.1016/B978-0-323-44306-7.50335-2.
28. Crisafulli S, Sultana J, Ingrasciotta Y, et al. Role of healthcare databases and registries for surveillance of orphan drugs in the real-world setting: the Italian case study. Expert Opinion on Drug Safety. 2019;18(6):497–509. doi: https://doi.org/10.1080/14740338.2019.1614165.
29. Bell SA, Tudur Smith C. A comparison of interventional clinical trials in rare versus non-rare diseases: an analysis of ClinicalTrials.gov. Orphanet J Rare Dis. 2014;9(1):170. doi: https://doi.org/10.1186/s13023-014-0170-0.
30. Logviss K, Krievins D, Purvina S. Characteristics of clinical trials in rare vs. common diseases: A register-based Latvian study. PLoS ONE / ed. Rosenkranz G. 2018;13(4):e0194494. doi: https://doi.org/10.1371/journal.pone.0194494.
31. Jayasundara K, Hollis A, Krahn M, et al. Estimating the clinical cost of drug development for orphan versus non-orphan drugs. Orphanet J Rare Dis. 2019;14(1):12. doi: https://doi.org/10.1186/s13023-018-0990-4.
32. Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Statistics in Medicine. 2012;31(25):2973–2984. doi: https://doi.org/10.1002/sim.5403.
33. Ou F-S, Michiels S, Shyr Y, et al. Biomarker Discovery and Validation: Statistical Considerations. Journal of Thoracic Oncology. 2021;16(4):537– 545. doi: https://doi.org/10.1016/j.jtho.2021.01.1616.
34. Ciani O, Grigore B, Blommestein H, et al. Validity of Surrogate Endpoints and Their Impact on Coverage Recommendations: A Retrospective Analysis across International Health Technology Assessment Agencies. Med Decis Making. 2021;41(4):439–452. doi: https://doi.org/10.1177/0272989X21994553.
35. Feng J, Gao Z, Shi Z, et al. Patient-reported outcomes in Gaucher’s disease: a systematic review. Orphanet J Rare Dis. 2023;18(1):244. doi: https://doi.org/10.1186/s13023-023-02844-w.
36. Slade A, Isa F, Kyte D, et al. Patient reported outcome measures in rare diseases: a narrative review. Orphanet J Rare Dis. 2018;13(1):61. doi: https://doi.org/10.1186/s13023-018-0810-x.
37. Neul JL, Percy AK, Benke TA, et al. Trofinetide for the treatment of Rett syndrome: a randomized phase 3 study. Nat Med. 2023;29(6):1468–1475. doi: https://doi.org/10.1038/s41591-023-02398-1.
38. Percy A, Ryther R, Marsh E, et al. Trofinetide for the treatment of Rett syndrome: an open-label study in girls 2 to 4 years of age (P13-9.005). Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology, 2023;100(17),Supplement 2. doi: https://doi.org/10.1212/WNL.0000000000201897.
39. Clinical Review. Информация о лекарственном препарате, размещенная на сайте Управления по контролю качества пищевых продуктов и лекарственных средств США (англ. Food and Drug Administration, FDA) [Электронный ресурс]. URL: https://www.access-data.fda.gov/drugsatfda_docs/nda/2023/217026Orig1s000MedR.pdf. Дата обращения: 30.07.2023
40. DAYBUETM (trofinetide) oral solution [Электронный ресурс]. URL: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/217026s000lbl.pdf. Дата обращения: 30.07.2023
41. Drug Trials Snapshots: XURIDEN [Электронный ресурс]. URL: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-xuriden. Дата обращения: 30.07.2023
42. Newton W. Drug development for ultra-rare diseases: What happens when N=1? [Электронный ресурс] // Clinical Trials Arena. 2022. URL: https://www.clinicaltrialsarena.com/features/drug-development-for-ultra-rare-diseases-what-happens-when-n1/ (Дата обращения: 27.07.2023).
43. Anzelewicz S, Garnier H, Rangaswami A, et al. Cultural, geographical and ethical questions when looking to enroll pediatric patients in rare disease clinical trials. Expert Opinion on Orphan Drugs. 2017;5(8):613– 621. doi: https://doi.org/10.1080/21678707.2017.1348293.
44. Bertha A, Alaj R, Bousnina I, et al. Incorporating digitally derived endpoints within clinical development programs by leveraging prior work. NPJ Digit Med. 2023 Aug 10;6(1):139. doi: 10.1038/s41746-023-00886-9.
45. Bill Byrom P. Utilizing DHTs for Clinical Trial Endpoints. Applied Clinical Trials. 2021;30(5).
46. Gaasterland CMW, van der Weide MCJ, du Prie – Olthof MJ, et al. The patient’s view on rare disease trial design – a qualitative study. Orphanet J Rare Dis. 2019;14(1):31. doi: https://doi.org/10.1186/s13023-019-1002-z.
47. Locatelli F, Jordan MB, Allen C, et al. Emapalumab in Children with Primary Hemophagocytic Lymphohistiocytosis. New England Journal of Medicine. 2020;382(19):1811–1822. doi: https://doi.org/10.1056/NEJMoa1911326.
48. 48. Multicentre Study to Assess Safety Tolerability Pharmacokinetics and Efficacy of i.v. Administrations of NI-0501 an Anti-IFNγ mAb in Paediatric Patients With Primary Haemophagocytic Lymphohistiocytosis: Clinical trial registration NCT01818492. clinicaltrials.gov, 2023.
49. Orphan alertness in clinical examination of children. Pediatric pharmacology. 2021;18(2):156-157. (In Russ.)]
50. Auvin S, Avbersek A, Bast T, et al. Drug Development for Rare Paediatric Epilepsies: Current State and Future Directions. Drugs. 2019;79(18):1917– 1935. doi: https://doi.org/10.1007/s40265-019-01223-9.
51. Alfonso Farnós I, Alcalde Bezhold G. Clinical research in rare diseases: New challenges, opportunities and ethical issues. An Pediatr (Engl Ed). 2020;93(4):219–221. doi: https://doi.org/10.1016/j.anpede.2020.06.001.
52. Hasford J, Koch A. Erratum to: Ethical aspects of clinical trials in rare diseases. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2017 Aug;60(8):893. English. doi: 10.1007/s00103-017-2588-8. Erratum for: Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2017 May;60(5):556-562. doi: 10.1007/s00103-017-2537-6.
53. Order of the Ministry of Health of Russian Federation of 10 July 2015 №435n. “Ob Ehticheskom komitete Ministerstva zdravookhraneniya Rossijskoj Federacii”. (In Russ)] Доступно по: https://minzdrav.gov.ru/documents/9209-prikaz-ministerstva-zdravoohraneniya-rf-ot-10-iyulya-2015-g-435n-ob-eticheskom-komitete-ministerstva-zdravoohraneniya-rossiyskoy-federatsii. Ссылка активна на 18.03.2024.
54. Rare Diseases: Natural History Studies for Drug Development. Draft Guidance for Industry [Электронный ресурс]. 2019. URL: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-natural-history-studies-drug-development (Дата обращения: 01.12.2023).
55. Bratton E, Holt C, Kromrey S, et al. Natural History Studies for Rare Diseases: Development Strategies for External Comparator Arms Leveraging Real World Insights [Электронный ресурс]. URL: https://www.iqvia.com/library/white-papers/natural-history-studies-for-rare-diseases (Дата обращения: 01.12.2023).
56. Как «Геном Эксперт» комплексно решает задачи генетиков? [Электронный ресурс]. 2023. URL: https://bars.group/press-center/meropriyatiya/kak-genom-ekspert-kompleksno-reshaet-zadachi-genetikov/ (Дата обращения: 30.11.2023).
57. FDA approves first treatment for a form of Batten disease [Электронный ресурс] // FDA. 2020. URL: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-form-batten-disease (Дата обращения: 15.08.2023).
58. Pizzamiglio C, Vernon HJ, Hanna MG, et al. Designing clinical trials for rare diseases: unique challenges and opportunities. Nat Rev Methods Primers. 2022;2(1):s43586-022-00100–00102. https://doi.org/10.1038/s43586-022-00100-2.
59. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001 Mar;69(3):89-95. doi: 10.1067/mcp.2001.113989.
60. FDA Approves First Gene Therapy for Treatment of Certain Patients with Duchenne Muscular Dystrophy [Электронный ресурс] // FDA. 2023. URL: https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapy-treatment-certain-patients-duchenne-muscular-dystrophy (Дата обращения: 18.08.2023).
61. van der Sluis IM, de Groot-Kruseman H, te Loo M, et al. Efficacy and safety of recombinant E. coli asparaginase in children with previously untreated acute lymphoblastic leukemia: A randomized multicenter study of the Dutch Childhood Oncology Group. Pediatr Blood Cancer. 2018;65(8):e27083. doi: https://doi.org/10.1002/pbc.27083.
62. Jiang J, Batra S, Zhang J. Asparagine: A Metabolite to Be Targeted in Cancers. Metabolites. 2021;11(6):402. doi: https://doi.org/10.3390/metabo11060402.
63. Shah KK, Kogut S, Slitt A. Challenges in Evaluating Safety and Efficacy in Drug Development for Rare Diseases: A Review for Pharmacists. J Pharm Pract. 2021;34(3):472–479. doi: https://doi.org/10.1177/0897190020930972.
64. Pallmann P, Bedding AW, Choodari-Oskooei B, et al. Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Medicine. 2018;16(1):29. doi: https://doi.org/10.1186/s12916-018-1017-7.
65. Adaptive Design Clinical Trials for Drugs and Biologics Guidance for Industry [Электронный ресурс]. FDA, 2020. URL: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry (Дата обращения: 11.09.2023).
66. Stallard N, Todd S. Seamless phase II/III designs. Stat Methods Med Res. 2011;20(6):623–634. doi: https://doi.org/10.1177/0962280210379035.
67. Chow S-C, Chang M. Adaptive design methods in clinical trials – a review. Orphanet J Rare Dis. 2008;3:11. doi: https://doi.org/10.1186/1750-1172-3-11.
68. Collette L. Sample Size Re-Estimation as an Adaptive Design. Applied Clinical Trials. 2021;30(9).
69. Introduction to N-of-1 Trials: Indications and Barriers (Chapter 1) | Effective Health Care (EHC) Program [Электронный ресурс]. URL: https://effectivehealthcare.ahrq.gov/products/n-1-trials/research-20144#toc-1 (Дата обращения: 12.09.2023).
70. Feldman B, Wang E, Willan A, Szalai JP. The randomized placebo-phase design for clinical trials. J Clin Epidemiol. 2001 Jun;54(6):550-7. doi: 10.1016/s0895-4356(00)00357-7.
71. Abrahamyan L, Feldman BM, Tomlinson G, et al. Alternative designs for clinical trials in rare diseases. American Journal of Medical genetics. Part C, Seminars in Medical Genetics. 2016 Dec;172(4):313-331. DOI: 10.1002/ajmg.c.31533.
72. Spineli LM, Jenz E, Großhennig A, et al. Critical appraisal of arguments for the delayed-start design proposed as alternative to the parallel-group randomized clinical trial design in the field of rare disease. Orphanet J Rare Dis. 2017;12(1):140. doi: https://doi.org/10.1186/s13023-017-0692-3.
73. Cornu C, Kassai B, Fisch R, et al. Experimental designs for small randomised clinical trials: an algorithm for choice. Orphanet J Rare Dis. 2013;8(1):48. doi: https://doi.org/10.1186/1750-1172-8-48.
74. Baiardi P, Giaquinto C, Girotto S et al. Innovative study design for paediatric clinical trials. Eur J Clin Pharmacol. 2011;67(S1):109–115. doi: https://doi.org/10.1007/s00228-011-0990-y.
75. Fetro C, Scherman D. Drug repurposing in rare diseases: Myths and reality. Therapie. 2020;75(2):157–160. doi: https://doi.org/10.1016/j.therap.2020.02.006.
76. Rana P, Chawla S. Orphan drugs: trends and issues in drug development. J Basic Clin Physiol Pharmacol. 2018;29(5):437–446. doi: https://doi.org/10.1515/jbcpp-2017-0206.
77. Kolbin A.S., Gapeshin R.A., Malyshev S.M. Current Problems in Provision of Orphan Drugs and Ways to Solve Them. Current Pediatrics. 2016;15(4):344-351. (In Russ.)].
Review
For citations:
Оmelyanovskiy V.V., Kutsev S.I., Mukhortova P.A., Kharitonova A.G., Slabikova A.A., Ignatyeva N.V., Kingshott A.A., Teptsova T.S., Bogdanova V.O. Approaches to reduce the uncertainty in the clinical efficacy of orphan drugs. Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice. 2024;(4):82-96. (In Russ.) https://doi.org/10.37489/2588-0519-2024-4-82-96. EDN: MQOHEI