Preview

Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice

Advanced search

Potential use of nanoparticles to improve the effectiveness  and safety of pharmacotherapy during pregnancy

https://doi.org/10.37489/2588-0519-2024-4-35-45

EDN: IXHNSD

Abstract

Relevance. Pharmacotherapy during pregnancy is associated with great risks for the fetus in the case of therapy of non-obstetric diseases of the mother, in addition, issues of improving the effectiveness of treatment of placental pathology, thrombophilic conditions, and other pregnancy complications remain a priority. Recently, the possibilities of using nanomaterials in medicine have been actively studied, including for the purpose of modifying the delivery or distribution of medicines.

Objective. The aim was to conduct a structured analysis of the published literature on the use of nanomaterials for therapeutic purposes during pregnancy.

Methods. The analysis of publications in PubMed, Cyberleninka, and eLIBRARY databases on the keywords “Nanoparticles” and “Pregnancy” was carried out, with the exception of mentioning nanoparticles in the context of environmental pollutants, as well as in the context of diagnostic methods.

Results. Information is provided on the nature of nanoparticles that have been developed and studied in the context of the prospect of use during pregnancy. An overview of the areas of clinical application of such materials is provided, as well as the available evidence of their effectiveness and safety.

Conclusion. Therapeutic systems containing drugs and various nanomaterials have a good potential for clinical use in order to ensure targeted drug delivery, modification of their bio-distribution in order to increase clinical efficacy and reduce the toxicity of drugs.

About the Authors

K. A. Zagorodnikova
Almazov National Medical Research Centre
Russian Federation

Ksenia A. Zagorodnikova — Cand. Sci (Med.), Associate Professor of the Institute of Medical Education

Saint Petersburg



O. A. Bettikher
Almazov National Medical Research Centre
Russian Federation

Ofelia A. Bettikher — Cand. Sci (Med), assistant at the Institute of Medical Education

Saint Petersburg



I. Ye. Zazerskaya
Almazov National Medical Research Centre
Russian Federation

Irina Ye. Zazerskaya — Cand. Sci. (Med), Professor, Head of the Institute of Medical Education

Saint Petersburg



References

1. Lupattelli A, Spigset O, Twigg MJ, et al. Medication use in pregnancy: a cross-sectional, multinational web-based study. BMJ Open. 2014;4(2):e004365. doi:10.1136/bmjopen-2013-004365

2. Diusembayeva NK, Kalieva SS, Yukhnevich YA, Miasnikova ZV. Clinical trials of medicinal products in pregnant women (overview). Bulletin of the Karaganda University “Biology, medicine, geography Series.” 2022;106(2):145-153. doi:10.31489/2022bmg2/145-153

3. Hepner A, Negrini D, Hase EA, et al. Cancer During Pregnancy: The Oncologist Overview. World J Oncol. 2019;10(1):28. doi:10.14740/WJON1177

4. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165-3241. doi:10.1093/eurheartj/ehy340

5. Shan D, Ji Y, Hu Y, Li T. Treasure to the mother and threat to the fetus: case report of warfarin-associated fetal intracranial hemorrhage and review of literature. J Int Med Res. 2023;51(8):1-12. doi:10.1177/03000605231192773

6. Sousa AR, Barreira R, Santos E. Low-dose warfarin maternal anticoagulation and fetal warfarin syndrome. BMJ Case Rep. 2018;2018. doi:10.1136/BCR-2017-223159

7. Lan H, Jamil M, Ke G, Dong N. The role of nanoparticles and nanomaterials in cancer diagnosis and treatment: a comprehensive review. Am J Cancer Res. 2023;13(12):5751.

8. Afzal O, Altamimi ASA, Nadeem MS, et al. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials (Basel). 2022;12(24). doi:10.3390/NANO12244494

9. van Kammen CM, van Woudenberg SJ, Schiffelers R, Terstappen F, Lely AT. Nanomedicines: An approach to treat placental insufficiency and the current challenges. Journal of Controlled Release. 2023;360:57-68. doi:10.1016/J.JCONREL.2023.06.003

10. Pereira KV, Giacomeli R, Gomes de Gomes M, Haas SE. The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications. Placenta. 2020;100:75. doi:10.1016/J.PLACENTA.2020.08.005

11. Young RE, Nelson KM, Hofbauer SI, et al. Systematic development of ionizable lipid nanoparticles for placental mRNA delivery using a design of experiments approach. Bioact Mater. 2023;34:125. doi:10.1016/J.BIOACTMAT.2023.11.014

12. Swingle KL, Safford HC, Geisler HC, et al. Ionizable Lipid Nanoparticles for In Vivo mRNA Delivery to the Placenta during Pregnancy. J Am Chem Soc. 2023;145(8):4691-4706. doi:10.1021/JACS.2C12893/SUPPL_FILE/JA2C12893_SI_001.PDF

13. Tse WH, Higgins S, Patel D, et al. The maternal-fetal transfer of passive immunity as a mechanism of transplacental nanoparticle drug delivery for prenatal therapies. Biomater Sci. 2022;10(18):5243-5253. doi:10.1039/D2BM00293K

14. Geisler HC, Ghalsasi AA, Safford HC, et al. EGFR-targeted ionizable lipid nanoparticles enhance in vivo mRNA delivery to the placenta. Journal of Controlled Release. 2024;371:455-469. doi:10.1016/J.JCONREL.2024.05.036

15. Tuzel-Kox SN, Patel HM, Kox WJ. Uptake of drug-carrier liposomes by placenta: Transplacental delivery of drugs and nutrients. Journal of Pharmacology and Experimental Therapeutics. 1995;274(1):104-109.

16. Irvin-Choy NDS, Nelson KM, Gleghorn JP, Day ES. Delivery and short-term maternal and fetal safety of vaginally administered PEG-PLGA nanoparticles. Drug Deliv Transl Res. 2023;13(12):3003-3013. doi:10.1007/S13346-023-01369-W

17. Refuerzo JS, Godin B, Bishop K, et al. Size of the nanovectors determines the transplacental passage in pregnancy: study in rats. Am J Obstet Gynecol. 2011;204(6):546.e5-546.e9. doi:10.1016/J.AJOG.2011.02.033

18. Chu M, Wu Q, Yang H, et al. Transfer of Quantum Dots from Pregnant Mice to Pups Across the Placental Barrier. Small. 2010;6(5):670-678. doi:10.1002/SMLL.200902049

19. Kuna M, Waller JP, Logue OC, Bidwell GL. Polymer size affects biodistribution and placental accumulation of the drug delivery biopolymer elastin-like polypeptide in a rodent pregnancy model. Placenta. 2018;72- 73:20-27. doi:10.1016/J.PLACENTA.2018.10.005

20. Kim HJ, Park JS, Yi SW, et al. A transport system based on a quantum dot-modified nanotracer is genetically and developmentally stable in pregnant mice. Biomater Sci. 2020;8(12):3392-3403. doi:10.1039/D0BM 00311E

21. Irvin-Choy NS, Nelson KM, Dang MN, Gleghorn JP, Day ES. Gold nanoparticle biodistribution in pregnant mice following intravenous administration varies with gestational age. Nanomedicine. 2021;36. doi:10.1016/J.NANO.2021.102412

22. Myllynen PK, Loughran MJ, Howard CV, Sormunen R, Walsh AA, Vähäkangas KH. Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol. 2008;26(2):130-137. doi:10.1016/J.REPROTOX.2008.06.008

23. Chen S, Tian D, Yang X, et al. Biocompatible Assessment of Erythrocyte Membrane-Camouflaged Polymeric PLGA Nanoparticles in Pregnant Mice: Both on Maternal and Fetal/Juvenile Mice. Int J Nanomedicine. 2022;17:5899. doi:10.2147/IJN.S384906

24. Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol. 2023;97(8):2111-2131. doi:10.1007/S00204-023-03528-X

25. Sousa De Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397. doi:10.1039/D0CS01127D

26. Ali H, Kalashnikova I, White MA, Sherman M, Rytting E. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int J Pharm. 2013;454(1):149-157. doi:10.1016/J.IJPHARM.2013.07.010

27. Albekairi NA, Al-Enazy S, Ali S, Rytting E. Transport of digoxin-loaded polymeric nanoparticles across BeWo cells, an in vitro model of human placental trophoblast. Ther Deliv. 2015;6(12):1325-1334. doi:10.4155/TDE.15.79/SUPPL_FILE/TDE-06-1325-S1.DOCX

28. Lopalco A, Ali H, Denora N, Rytting E. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast. Int J Nanomedicine. 2015;10(10):1985. doi:10.2147/IJN.S77498

29. Sezgin-Bayindir Z, Elcin AE, Parmaksiz M, Elcin YM, Yuksel N. Investigations on clonazepam-loaded polymeric micelle-like nanoparticles for safe drug administration during pregnancy. J Microencapsul. 2018;35(2):149-164. doi:10.1080/02652048.2018.1447615

30. Chaudhary N, Newby AN, Arral ML, et al. Lipid nanoparticle structure and delivery route during pregnancy dictate mRNA potency, immunogenicity, and maternal and fetal outcomes. Proc Natl Acad Sci U S A. 2024;121(11):e2307810121. doi:10.1073/PNAS.2307810121

31. Bajoria R, Sooranna S, Chatterjee R. Effect of lipid composition of cationic SUV liposomes on materno-fetal transfer of warfarin across the perfused human term placenta. Placenta. 2013;34(12):1216-1222. doi:10.1016/J.PLACENTA.2013.10.005

32. Kalashnikova I, Patrikeeva S, Nanovskaya TN, Andreev YA, Ahmed MS, Rytting E. Folate-mediated Transport of Nanoparticles across the Placenta. Pharm Nanotechnol. 2023;12(2):171-183. doi:10.2174/221173851166 6230717122429

33. Ali S, Albekairi NA, Al-Enazy S, et al. Formulation effects on paclitaxel transfer and uptake in the human placenta. Nanomedicine. 2021;33:102354. doi:10.1016/J.NANO.2020.102354

34. Soininen SK, Repo JK, Karttunen V, Auriola S, Vähäkangas KH, Ruponen M. Human placental cell and tissue uptake of doxorubicin and its liposomal formulations. Toxicol Lett. 2015;239(2):108-114. doi:10.1016/J.TOXLET.2015.09.011

35. Refuerzo JS, Leonard F, Bulayeva N, et al. Uterus-targeted liposomes for preterm labor management: studies in pregnant mice. Sci Rep. 2016;6:34710. doi:10.1038/SREP34710

36. Carboni F, Cozzi R, Romagnoli G, et al. Proof of concept for a single-dose Group B Streptococcus vaccine based on capsular polysaccharide conjugated to Qβ virus-like particles. npj Vaccines 2023 8:1. 2023;8(1):1-10. doi:10.1038/s41541-023-00744-5

37. Nayeri T, Sarvi S, Fasihi-Ramandi M, et al. Enhancement of immune responses by vaccine potential of three antigens, including ROP18, MIC4, and SAG1 against acute toxoplasmosis in mice. Exp Parasitol. 2023;244. doi:10.1016/J.EXPPARA.2022.108427

38. Calderón-Gonzalez R, Terán-Navarro H, Frande-Cabanes E, et al. Pregnancy Vaccination with Gold Glyco-Nanoparticles Carrying Listeria monocytogenes Peptides Protects against Listeriosis and Brain- and Cutaneous-Associated Morbidities. Nanomaterials. 2016;6(8):151. doi:10.3390/NANO6080151

39. Tiboni M, Cespi M, Casettari L, Palmieri GF, Perinelli DR, Bonacucina G. Hydrogel containing mPEG-PLGA nanoparticles for the vaginal delivery of saquinavir mesylate against HIV infection. Eur J Pharm Sci. 2023;191. doi:10.1016/J.EJPS.2023.106599

40. Takalani F, Kumar P, Kondiah PPD, Choonara YE. Co-emulsified Alginate-Eudragit Nanoparticles: Potential Carriers for Localized and Time-defined Release of Tenofovir in the Female Genital Tract. AAPS PharmSciTech. 2024;25(1):1-17. doi:10.1208/S12249-023-02723-4/FIGURES/8

41. Deshkar S, Sikchi S, Thakre A, Kale R. Poloxamer Modified Chitosan Nanoparticles for Vaginal Delivery of Acyclovir. Pharm Nanotechnol. 2021;9(2):141-156. doi:10.2174/2211738508666210108121541

42. Fernandes T, Patel V, Aranha C, et al. pH-triggered polymeric nanoparticles in gel for preventing vaginal transmission of HIV and unintended pregnancy. European Journal of Pharmaceutics and Biopharmaceutics. 2023;191:219-234. doi:10.1016/J.EJPB.2023.09.001

43. Verma R, Singh V, Koch B, Kumar M. Evaluation of methotrexate encapsulated polymeric nanocarrier for breast cancer treatment. Colloids Surf B Biointerfaces. 2023;226. doi:10.1016/J.COLSURFB.2023.113308

44. Zhang B, Cheng G, Zheng M, et al. Targeted delivery of doxorubicin by CSA-binding nanoparticles for choriocarcinoma treatment. Drug Deliv. 2018;25(1):461. doi:10.1080/10717544.2018.1435750

45. Blagoeva PM, Balansky RM, Mircheva TJ, Simeonova MI. Diminished genotoxicity of mitomycin C and farmorubicin included in polybutylcyanoacrylate nanoparticles. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1992;268(1):77-82. doi:10.1016/0027-5107(92)90085-G

46. Ramaswamy R, Joshi N, Khan MA, Siddhara S. Nanosomal docetaxel lipid suspension based chemotherapy in a pregnant MBC patient – a case report. Onco Targets Ther. 2019;12:5679. doi:10.2147/OTT.S206573

47. Scialli AR, Waterhouse TB, Desesso JM, Rahman A, Goeringer GC. Protective Effect of Liposome Encapsulation on Paclitaxel Developmental Toxicity in the Rat. Vol 56. Wiley-Liss, Inc; 1997.

48. Hoang T, Zierden H, Date A, et al. Development of a mucoinert progesterone nanosuspension for safer and more effective prevention of preterm birth. J Control Release. 2018;295:74. doi:10.1016/J.JCONREL.2018.12.046

49. Swingle KL, Safford HC, Geisler HC, et al. Ionizable Lipid Nanoparticles for In Vivo mRNA Delivery to the Placenta during Pregnancy. J Am Chem Soc. 2023;145(8):4691-4706. doi:10.1021/JACS.2C12893

50. Davenport BN, Jones HN, Wilson RL. Placental treatment with insulin-like growth factor 1 via nanoparticle differentially impacts vascular remodeling factors in guinea pig sub-placenta/decidua. Front Physiol. 2023;13. doi:10.3389/FPHYS.2022.1055234

51. Wilson RL, Stephens KK, Jones HN. Placental nanoparticle gene therapy normalizes gene expression changes in the fetal liver associated with fetal growth restriction in a fetal sex-specific manner. J Dev Orig Health Dis. 2023;14(3):325-332. doi:10.1017/S2040174423000016

52. Li Q, Liu X, Liu W, et al. Placenta-Targeted Nanoparticles Loaded with PFKFB3 Overexpression Plasmids Enhance Angiogenesis and Placental Function. Bioengineering (Basel). 2022;9(11):652. doi:10.3390/BIOENGINEERING9110652

53. Paul JW, Hua S, Ilicic M, et al. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am J Obstet Gynecol. 2017;216(3):283.e1-283.e14. doi:10.1016/J.AJOG.2016.08.027

54. Refuerzo JS, Leonard F, Bulayeva N, et al. Uterus-targeted liposomes for preterm labor management: studies in pregnant mice. Sci Rep. 2016;6. doi:10.1038/SREP34710

55. Murthi P, Harris LK. Liposome-Encapsulated Anti-inflammatory Proteins for Targeted Delivery to the Placenta to Treat Fetal Growth Restriction. Methods in Molecular Biology. 2024;2728:165-172. doi:10.1007/978-1-0716-3495-0_14

56. Jiang Z, Tang H, Xiong Q, Li M, Dai Y, Zhou Z. Placental cell translocation of folate-conjugated pullulan acetate non-spherical nanoparticles. Colloids Surf B Biointerfaces. 2022;216. doi:10.1016/J.COLSURFB.2022.112553

57. Cui J, Yang Z, Ma R, et al. Placenta-targeted Treatment Strategies for Preeclampsia and Fetal Growth Restriction: An Opportunity and Major Challenge. Stem Cell Rev Rep. 2024;20(6):1501. doi:10.1007/S12015-024-10739-X

58. Zhou Y, Xu L, Jin P, et al. NET-targeted nanoparticles for antithrombotic therapy in pregnancy. iScience. 2024;27(5):109823. doi:10.1016/J.ISCI.2024.109823

59. Cheng J, Jia X, Yang L, et al. New therapeutic target NCF1-directed multi-bioactive conjugate therapies prevent preterm birth and adverse pregnancy outcomes. Sci Bull (Beijing). 2024;69(16):2604-2621. doi:10.1016/J.SCIB.2024.03.064

60. Mwema A, Bottemanne P, Paquot A, et al. Lipid nanocapsules for the nose-to-brain delivery of the anti-inflammatory bioactive lipid PGD2-G. Nanomedicine. 2023;48. doi:10.1016/J.NANO.2022.102633

61. Yuryev M, Ferreira MP, Balasubramanian V, et al. Active diffusion of nanoparticles of maternal origin within the embryonic brain. Nanomedicine (Lond). 2016;11(19):2471-2481. doi:10.2217/NNM-2016-0207

62. Yang PT, Hoang L, Jia WW, Skarsgard ED. In utero gene delivery using chitosan-DNA nanoparticles in mice. Journal of Surgical Research. 2011;171(2):691-699. doi:10.1016/j.jss.2010.05.039

63. Ullrich SJ, Freedman-Weiss M, Ahle S, et al. Nanoparticles for Delivery of Agents to Fetal Lungs. Acta Biomater. 2021;123:346-353. doi:10.1016/J.ACTBIO.2021.01.024

64. Dai J, Chen Z, Chen B, et al. Erythrocyte Membrane-Camouflaged Aggregation-Induced Emission Nanoparticles for Fetal Intestinal Maturation Assessment. Anal Chem. 2022;94(50):17504-17513. doi:10.1021/ACS.ANALCHEM.2C03772/SUPPL_FILE/AC2C03772_SI_001.PDF

65. El-Beltagy AEFBM, Bakr SM, Mekhaimer SSG, Ghanem NF, Attaallah A. Zinc-nanoparticles alleviate the ovarian damage induced by bacterial lipopolysaccharide (LPS) in pregnant rats and their fetuses. Histochem Cell Biol. 2023;160(5):453. doi:10.1007/S00418-023-02222-4

66. Viana CE, Bortolotto VC, Araujo SM, et al. Lutein-loaded nanoparticles reverse oxidative stress, apoptosis, and autism spectrum disorder-like behaviors induced by prenatal valproic acid exposure in female rats. Neurotoxicology. 2023;94:223-234. doi:10.1016/J.NEURO.2022.12.006

67. Afshari M, Gharibzadeh S, Pouretemad H, Roghani M. Reversing valproic acid-induced autism-like behaviors through a combination of low-frequency repeated transcranial magnetic stimulation and superparamagnetic iron oxide nanoparticles. Sci Rep. 2024;14(1):8082. doi:10.1038/S41598-024-58871-5

68. Alhazza IM, Ebaid H, Omar MS, et al. Supplementation with selenium nanoparticles alleviates diabetic nephropathy during pregnancy in the diabetic female rats. Environmental Science and Pollution Research. 2022;29(4):5517-5525. doi:10.1007/S11356-021-15905-Z/METRICS

69. Muhammad T, Jamal MA, Ashraf M, et al. Gold nanoparticles improve the embryonic developmental competency of artificially activated mouse oocytes. Veterinary Research Forum. 2021;12(4):415. doi:10.30466/VRF.2020.119759.2829

70. Ganguly E, Kirschenman R, Spaans F, et al. Nanoparticle-encapsulated antioxidant improves placental mitochondrial function in a sexually dimorphic manner in a rat model of prenatal hypoxia. FASEB Journal. 2021;35(2). doi:10.1096/FJ.202002193R

71. Vafaei-Pour Z, Shokrzadeh M, Jahani M, Shaki F. Embryo-Protective Effects of Cerium Oxide Nanoparticles against Gestational Diabetes in Mice. Iran J Pharm Res. 2018;17(3):964. Accessed December 3, 2024. https://pmc.ncbi.nlm.nih.gov/articles/PMC6094439/

72. Kamal Z, Said AH, Ebnalwaled AA, et al. Genetic effects of chemically and biosynthesized titanium dioxide nanoparticles in vitro and in vivo of female rats and their fetuses. Front Vet Sci. 2023;10. doi:10.3389/FVETS.2023.1142305

73. Ivlieva AL, Petritskaya EN, Rogatkin DA, Zinicovscaia I, Yushin N, Grozdov D. Impact of Chronic Oral Administration of Gold Nanoparticles on Cognitive Abilities of Mice. Int J Mol Sci. 2023;24(10). doi:10.3390/IJMS24108962/S1

74. Saunders M. Transplacental transport of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(6):671-684. doi:10.1002/WNAN.53

75. Tsyganova NA, Khairullin RM, Terentyuk GS, et al. Penetration of pegylated gold nanoparticles through rat placental barrier. Bull Exp Biol Med. 2014;157(3):383-385. doi:10.1007/S10517-014-2572-3/METRICS

76. Luo J, Zhang M, Deng Y, et al. Copper nanoparticles lead to reproductive dysfunction by affecting key enzymes of ovarian hormone synthesis and metabolism in female rats. Ecotoxicol Environ Saf. 2023;254. doi:10.1016/J.ECOENV.2023.114704

77. Sakahashi Y, Higashisaka K, Isaka R, et al. Silver nanoparticles suppress forskolin-induced syncytialization in BeWo cells. Nanotoxicology. 2022;16(9-10):883-894. doi:10.1080/17435390.2022.2162994

78. Zhang S, Meng P, Cheng S, et al. Pregnancy exposure to carbon black nanoparticles induced neurobehavioral deficits that are associated with altered m6A modification in offspring. Neurotoxicology. 2020;81:40-50. doi:10.1016/J.NEURO.2020.07.004

79. Lee J, Yu WJ, Song J, et al. Developmental toxicity of intravenously injected zinc oxide nanoparticles in rats. Arch Pharm Res. 2016;39(12):1682-1692. doi:10.1007/S12272-016-0767-Z/METRICS

80. Hsieh MS, Shiao NH, Chan WH. Cytotoxic Effects of CdSe Quantum Dots on Maturation of Mouse Oocytes, Fertilization, and Fetal Development. Int J Mol Sci. 2009;10(5):2122. doi:10.3390/IJMS10052122

81. Madugulla L, Ravula AR, Kondapi AK, Yenugu S. Evaluation of the reproductive toxicity of antiretroviral drug loaded lactoferrin nanoparticles. Syst Biol Reprod Med. 2019;65(3):205-213. doi:10.1080/19396368.2018.1519047

82. Le Bras A. Evaluation of lipid nanoparticles for safe and efficient RNA delivery during pregnancy. Lab Animal 2024 53:5. 2024;53(5):112-112. doi:10.1038/s41684-024-01374-7


Review

For citations:


Zagorodnikova K.A., Bettikher O.A., Zazerskaya I.Ye. Potential use of nanoparticles to improve the effectiveness  and safety of pharmacotherapy during pregnancy. Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice. 2024;(4):35-45. (In Russ.) https://doi.org/10.37489/2588-0519-2024-4-35-45. EDN: IXHNSD

Views: 314


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2588-0519 (Print)
ISSN 2618-8473 (Online)