↑1. Lupattelli A, Spigset O, Twigg MJ, et al. Medication use in pregnancy: a cross-sectional, multinational web-based study. BMJ Open. 2014;4(2):e004365. https://doi.org/10.1136/bmjopen-2013-004365
↑2. Diusembayeva NK, Kalieva SS, Yukhnevich YA, Miasnikova ZV. Clinical trials of medicinal products in pregnant women (overview). Bulletin of the Karaganda University “Biology, medicine, geography Series.” 2022;106(2):145-153. https://doi.org/10.31489/2022bmg2/145-153
↑3. Hepner A, Negrini D, Hase EA, et al. Cancer During Pregnancy: The Oncologist Overview. World J Oncol. 2019;10(1):28. https://doi.org/10.14740/WJON1177
↑4. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165-3241. https://doi.org/10.1093/eurheartj/ehy340
↑5. Shan D, Ji Y, Hu Y, Li T. Treasure to the mother and threat to the fetus: case report of warfarin-associated fetal intracranial hemorrhage and review of literature. J Int Med Res. 2023;51(8):1-12. https://doi.org/10.1177/03000605231192773
↑6. Sousa AR, Barreira R, Santos E. Low-dose warfarin maternal anticoagulation and fetal warfarin syndrome. BMJ Case Rep. 2018;2018. https://doi.org/10.1136/BCR-2017-223159
↑7. Lan H, Jamil M, Ke G, Dong N. The role of nanoparticles and nanomaterials in cancer diagnosis and treatment: a comprehensive review. Am J Cancer Res. 2023;13(12):5751.
↑8. Afzal O, Altamimi ASA, Nadeem MS, et al. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials (Basel). 2022;12(24). https://doi.org/10.3390/NANO12244494
↑9. van Kammen CM, van Woudenberg SJ, Schiffelers R, Terstappen F, Lely AT. Nanomedicines: An approach to treat placental insufficiency and the current challenges. Journal of Controlled Release. 2023;360:57-68. https://doi.org/10.1016/J.JCONREL.2023.06.003
↑10. Pereira KV, Giacomeli R, Gomes de Gomes M, Haas SE. The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications. Placenta. 2020;100:75. https://doi.org/10.1016/J.PLACENTA.2020.08.005
↑11. Young RE, Nelson KM, Hofbauer SI, et al. Systematic development of ionizable lipid nanoparticles for placental mRNA delivery using a design of experiments approach. Bioact Mater. 2023;34:125. https://doi.org/10.1016/J.BIOACTMAT.2023.11.014
↑12. Swingle KL, Safford HC, Geisler HC, et al. Ionizable Lipid Nanoparticles for In Vivo mRNA Delivery to the Placenta during Pregnancy. J Am Chem Soc. 2023;145(8):4691-4706. https://doi.org/10.1021/JACS.2C12893/SUPPL_FILE/JA2C12893_SI_001.PDF
↑13. Tse WH, Higgins S, Patel D, et al. The maternal-fetal transfer of passive immunity as a mechanism of transplacental nanoparticle drug delivery for prenatal therapies. Biomater Sci. 2022;10(18):5243-5253. https://doi.org/10.1039/D2BM00293K
↑14. Geisler HC, Ghalsasi AA, Safford HC, et al. EGFR-targeted ionizable lipid nanoparticles enhance in vivo mRNA delivery to the placenta. Journal of Controlled Release. 2024;371:455-469. https://doi.org/10.1016/J.JCONREL.2024.05.036
↑15. Tuzel-Kox SN, Patel HM, Kox WJ. Uptake of drug-carrier liposomes by placenta: Transplacental delivery of drugs and nutrients. Journal of Pharmacology and Experimental Therapeutics. 1995;274(1):104-109.
↑16. Irvin-Choy NDS, Nelson KM, Gleghorn JP, Day ES. Delivery and short-term maternal and fetal safety of vaginally administered PEG-PLGA nanoparticles. Drug Deliv Transl Res. 2023;13(12):3003-3013. https://doi.org/10.1007/S13346-023-01369-W
↑17. Refuerzo JS, Godin B, Bishop K, et al. Size of the nanovectors determines the transplacental passage in pregnancy: study in rats. Am J Obstet Gynecol. 2011;204(6):546.e5-546.e9. https://doi.org/10.1016/J.AJOG.2011.02.033
↑18. Chu M, Wu Q, Yang H, et al. Transfer of Quantum Dots from Pregnant Mice to Pups Across the Placental Barrier. Small. 2010;6(5):670-678. https://doi.org/10.1002/SMLL.200902049
↑19. Kuna M, Waller JP, Logue OC, Bidwell GL. Polymer size affects biodistribution and placental accumulation of the drug delivery biopolymer elastin-like polypeptide in a rodent pregnancy model. Placenta. 2018;72- 73:20-27. https://doi.org/10.1016/J.PLACENTA.2018.10.005
↑20. Kim HJ, Park JS, Yi SW, et al. A transport system based on a quantum dot-modified nanotracer is genetically and developmentally stable in pregnant mice. Biomater Sci. 2020;8(12):3392-3403. https://doi.org/10.1039/D0BM 00311E
↑21. Irvin-Choy NS, Nelson KM, Dang MN, Gleghorn JP, Day ES. Gold nanoparticle biodistribution in pregnant mice following intravenous administration varies with gestational age. Nanomedicine. 2021;36. https://doi.org/10.1016/J.NANO.2021.102412
↑22. Myllynen PK, Loughran MJ, Howard CV, Sormunen R, Walsh AA, Vähäkangas KH. Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol. 2008;26(2):130-137. https://doi.org/10.1016/J.REPROTOX.2008.06.008
↑23. Chen S, Tian D, Yang X, et al. Biocompatible Assessment of Erythrocyte Membrane-Camouflaged Polymeric PLGA Nanoparticles in Pregnant Mice: Both on Maternal and Fetal/Juvenile Mice. Int J Nanomedicine. 2022;17:5899. https://doi.org/10.2147/IJN.S384906
↑24. Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol. 2023;97(8):2111-2131. https://doi.org/10.1007/S00204-023-03528-X
↑25. Sousa De Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397. https://doi.org/10.1039/D0CS01127D
↑26. Ali H, Kalashnikova I, White MA, Sherman M, Rytting E. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int J Pharm. 2013;454(1):149-157. https://doi.org/10.1016/J.IJPHARM.2013.07.010
↑27. Albekairi NA, Al-Enazy S, Ali S, Rytting E. Transport of digoxin-loaded polymeric nanoparticles across BeWo cells, an in vitro model of human placental trophoblast. Ther Deliv. 2015;6(12):1325-1334. https://doi.org/10.4155/TDE.15.79/SUPPL_FILE/TDE-06-1325-S1.DOCX
↑28. Lopalco A, Ali H, Denora N, Rytting E. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast. Int J Nanomedicine. 2015;10(10):1985. https://doi.org/10.2147/IJN.S77498
↑29. Sezgin-Bayindir Z, Elcin AE, Parmaksiz M, Elcin YM, Yuksel N. Investigations on clonazepam-loaded polymeric micelle-like nanoparticles for safe drug administration during pregnancy. J Microencapsul. 2018;35(2):149-164. https://doi.org/10.1080/02652048.2018.1447615
↑30. Chaudhary N, Newby AN, Arral ML, et al. Lipid nanoparticle structure and delivery route during pregnancy dictate mRNA potency, immunogenicity, and maternal and fetal outcomes. Proc Natl Acad Sci U S A. 2024;121(11):e2307810121. https://doi.org/10.1073/PNAS.2307810121
↑31. Bajoria R, Sooranna S, Chatterjee R. Effect of lipid composition of cationic SUV liposomes on materno-fetal transfer of warfarin across the perfused human term placenta. Placenta. 2013;34(12):1216-1222. https://doi.org/10.1016/J.PLACENTA.2013.10.005
↑32. Kalashnikova I, Patrikeeva S, Nanovskaya TN, Andreev YA, Ahmed MS, Rytting E. Folate-mediated Transport of Nanoparticles across the Placenta. Pharm Nanotechnol. 2023;12(2):171-183. https://doi.org/10.2174/221173851166 6230717122429
↑33. Ali S, Albekairi NA, Al-Enazy S, et al. Formulation effects on paclitaxel transfer and uptake in the human placenta. Nanomedicine. 2021;33:102354. https://doi.org/10.1016/J.NANO.2020.102354
↑34. Soininen SK, Repo JK, Karttunen V, Auriola S, Vähäkangas KH, Ruponen M. Human placental cell and tissue uptake of doxorubicin and its liposomal formulations. Toxicol Lett. 2015;239(2):108-114. https://doi.org/10.1016/J.TOXLET.2015.09.011
↑35. Refuerzo JS, Leonard F, Bulayeva N, et al. Uterus-targeted liposomes for preterm labor management: studies in pregnant mice. Sci Rep. 2016;6:34710. https://doi.org/10.1038/SREP34710
↑36. Carboni F, Cozzi R, Romagnoli G, et al. Proof of concept for a single-dose Group B Streptococcus vaccine based on capsular polysaccharide conjugated to Qβ virus-like particles. npj Vaccines 2023 8:1. 2023;8(1):1-10. https://doi.org/10.1038/s41541-023-00744-5
↑37. Nayeri T, Sarvi S, Fasihi-Ramandi M, et al. Enhancement of immune responses by vaccine potential of three antigens, including ROP18, MIC4, and SAG1 against acute toxoplasmosis in mice. Exp Parasitol. 2023;244. https://doi.org/10.1016/J.EXPPARA.2022.108427
↑38. Calderón-Gonzalez R, Terán-Navarro H, Frande-Cabanes E, et al. Pregnancy Vaccination with Gold Glyco-Nanoparticles Carrying Listeria monocytogenes Peptides Protects against Listeriosis and Brain- and Cutaneous-Associated Morbidities. Nanomaterials. 2016;6(8):151. https://doi.org/10.3390/NANO6080151
↑39. Tiboni M, Cespi M, Casettari L, Palmieri GF, Perinelli DR, Bonacucina G. Hydrogel containing mPEG-PLGA nanoparticles for the vaginal delivery of saquinavir mesylate against HIV infection. Eur J Pharm Sci. 2023;191. https://doi.org/10.1016/J.EJPS.2023.106599
↑40. Takalani F, Kumar P, Kondiah PPD, Choonara YE. Co-emulsified Alginate-Eudragit Nanoparticles: Potential Carriers for Localized and Time-defined Release of Tenofovir in the Female Genital Tract. AAPS PharmSciTech. 2024;25(1):1-17. https://doi.org/10.1208/S12249-023-02723-4/FIGURES/8
↑41. Deshkar S, Sikchi S, Thakre A, Kale R. Poloxamer Modified Chitosan Nanoparticles for Vaginal Delivery of Acyclovir. Pharm Nanotechnol. 2021;9(2):141-156. https://doi.org/10.2174/2211738508666210108121541
↑42. Fernandes T, Patel V, Aranha C, et al. pH-triggered polymeric nanoparticles in gel for preventing vaginal transmission of HIV and unintended pregnancy. European Journal of Pharmaceutics and Biopharmaceutics. 2023;191:219-234. https://doi.org/10.1016/J.EJPB.2023.09.001
↑43. Verma R, Singh V, Koch B, Kumar M. Evaluation of methotrexate encapsulated polymeric nanocarrier for breast cancer treatment. Colloids Surf B Biointerfaces. 2023;226. https://doi.org/10.1016/J.COLSURFB.2023.113308
↑44. Zhang B, Cheng G, Zheng M, et al. Targeted delivery of doxorubicin by CSA-binding nanoparticles for choriocarcinoma treatment. Drug Deliv. 2018;25(1):461. https://doi.org/10.1080/10717544.2018.1435750
↑45. Blagoeva PM, Balansky RM, Mircheva TJ, Simeonova MI. Diminished genotoxicity of mitomycin C and farmorubicin included in polybutylcyanoacrylate nanoparticles. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1992;268(1):77-82. https://doi.org/10.1016/0027-5107(92)90085-G
↑46. Ramaswamy R, Joshi N, Khan MA, Siddhara S. Nanosomal docetaxel lipid suspension based chemotherapy in a pregnant MBC patient - a case report. Onco Targets Ther. 2019;12:5679. https://doi.org/10.2147/OTT.S206573
↑47. Scialli AR, Waterhouse TB, Desesso JM, Rahman A, Goeringer GC. Protective Effect of Liposome Encapsulation on Paclitaxel Developmental Toxicity in the Rat. Vol 56. Wiley-Liss, Inc; 1997.
↑48. Hoang T, Zierden H, Date A, et al. Development of a mucoinert progesterone nanosuspension for safer and more effective prevention of preterm birth. J Control Release. 2018;295:74. https://doi.org/10.1016/J.JCONREL.2018.12.046
↑49. Swingle KL, Safford HC, Geisler HC, et al. Ionizable Lipid Nanoparticles for In Vivo mRNA Delivery to the Placenta during Pregnancy. J Am Chem Soc. 2023;145(8):4691-4706. https://doi.org/10.1021/JACS.2C12893
↑50. Davenport BN, Jones HN, Wilson RL. Placental treatment with insulin-like growth factor 1 via nanoparticle differentially impacts vascular remodeling factors in guinea pig sub-placenta/decidua. Front Physiol. 2023;13. https://doi.org/10.3389/FPHYS.2022.1055234
↑51. Wilson RL, Stephens KK, Jones HN. Placental nanoparticle gene therapy normalizes gene expression changes in the fetal liver associated with fetal growth restriction in a fetal sex-specific manner. J Dev Orig Health Dis. 2023;14(3):325-332. https://doi.org/10.1017/S2040174423000016
↑52. Li Q, Liu X, Liu W, et al. Placenta-Targeted Nanoparticles Loaded with PFKFB3 Overexpression Plasmids Enhance Angiogenesis and Placental Function. Bioengineering (Basel). 2022;9(11):652. https://doi.org/10.3390/BIOENGINEERING9110652
↑53. Paul JW, Hua S, Ilicic M, et al. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am J Obstet Gynecol. 2017;216(3):283.e1-283.e14. https://doi.org/10.1016/J.AJOG.2016.08.027
↑54. Refuerzo JS, Leonard F, Bulayeva N, et al. Uterus-targeted liposomes for preterm labor management: studies in pregnant mice. Sci Rep. 2016;6. https://doi.org/10.1038/SREP34710
↑55. Murthi P, Harris LK. Liposome-Encapsulated Anti-inflammatory Proteins for Targeted Delivery to the Placenta to Treat Fetal Growth Restriction. Methods in Molecular Biology. 2024;2728:165-172. https://doi.org/10.1007/978-1-0716-3495-0_14
↑56. Jiang Z, Tang H, Xiong Q, Li M, Dai Y, Zhou Z. Placental cell translocation of folate-conjugated pullulan acetate non-spherical nanoparticles. Colloids Surf B Biointerfaces. 2022;216. https://doi.org/10.1016/J.COLSURFB.2022.112553
↑57. Cui J, Yang Z, Ma R, et al. Placenta-targeted Treatment Strategies for Preeclampsia and Fetal Growth Restriction: An Opportunity and Major Challenge. Stem Cell Rev Rep. 2024;20(6):1501. https://doi.org/10.1007/S12015-024-10739-X
↑58. Zhou Y, Xu L, Jin P, et al. NET-targeted nanoparticles for antithrombotic therapy in pregnancy. iScience. 2024;27(5):109823. https://doi.org/10.1016/J.ISCI.2024.109823
↑59. Cheng J, Jia X, Yang L, et al. New therapeutic target NCF1-directed multi-bioactive conjugate therapies prevent preterm birth and adverse pregnancy outcomes. Sci Bull (Beijing). 2024;69(16):2604-2621. https://doi.org/10.1016/J.SCIB.2024.03.064
↑60. Mwema A, Bottemanne P, Paquot A, et al. Lipid nanocapsules for the nose-to-brain delivery of the anti-inflammatory bioactive lipid PGD2-G. Nanomedicine. 2023;48. https://doi.org/10.1016/J.NANO.2022.102633
↑61. Yuryev M, Ferreira MP, Balasubramanian V, et al. Active diffusion of nanoparticles of maternal origin within the embryonic brain. Nanomedicine (Lond). 2016;11(19):2471-2481. https://doi.org/10.2217/NNM-2016-0207
↑62. Yang PT, Hoang L, Jia WW, Skarsgard ED. In utero gene delivery using chitosan-DNA nanoparticles in mice. Journal of Surgical Research. 2011;171(2):691-699. https://doi.org/10.1016/j.jss.2010.05.039
↑63. Ullrich SJ, Freedman-Weiss M, Ahle S, et al. Nanoparticles for Delivery of Agents to Fetal Lungs. Acta Biomater. 2021;123:346-353. https://doi.org/10.1016/J.ACTBIO.2021.01.024
↑64. Dai J, Chen Z, Chen B, et al. Erythrocyte Membrane-Camouflaged Aggregation-Induced Emission Nanoparticles for Fetal Intestinal Maturation Assessment. Anal Chem. 2022;94(50):17504-17513. https://doi.org/10.1021/ACS.ANALCHEM.2C03772/SUPPL_FILE/AC2C03772_SI_001.PDF
↑65. El-Beltagy AEFBM, Bakr SM, Mekhaimer SSG, Ghanem NF, Attaallah A. Zinc-nanoparticles alleviate the ovarian damage induced by bacterial lipopolysaccharide (LPS) in pregnant rats and their fetuses. Histochem Cell Biol. 2023;160(5):453. https://doi.org/10.1007/S00418-023-02222-4
↑66. Viana CE, Bortolotto VC, Araujo SM, et al. Lutein-loaded nanoparticles reverse oxidative stress, apoptosis, and autism spectrum disorder-like behaviors induced by prenatal valproic acid exposure in female rats. Neurotoxicology. 2023;94:223-234. https://doi.org/10.1016/J.NEURO.2022.12.006
↑67. Afshari M, Gharibzadeh S, Pouretemad H, Roghani M. Reversing valproic acid-induced autism-like behaviors through a combination of low-frequency repeated transcranial magnetic stimulation and superparamagnetic iron oxide nanoparticles. Sci Rep. 2024;14(1):8082. https://doi.org/10.1038/S41598-024-58871-5
↑68. Alhazza IM, Ebaid H, Omar MS, et al. Supplementation with selenium nanoparticles alleviates diabetic nephropathy during pregnancy in the diabetic female rats. Environmental Science and Pollution Research. 2022;29(4):5517-5525. https://doi.org/10.1007/S11356-021-15905-Z/METRICS
↑69. Muhammad T, Jamal MA, Ashraf M, et al. Gold nanoparticles improve the embryonic developmental competency of artificially activated mouse oocytes. Veterinary Research Forum. 2021;12(4):415. https://doi.org/10.30466/VRF.2020.119759.2829
↑70. Ganguly E, Kirschenman R, Spaans F, et al. Nanoparticle-encapsulated antioxidant improves placental mitochondrial function in a sexually dimorphic manner in a rat model of prenatal hypoxia. FASEB Journal. 2021;35(2). https://doi.org/10.1096/FJ.202002193R
↑71. Vafaei-Pour Z, Shokrzadeh M, Jahani M, Shaki F. Embryo-Protective Effects of Cerium Oxide Nanoparticles against Gestational Diabetes in Mice. Iran J Pharm Res. 2018;17(3):964. Accessed December 3, 2024. https://pmc.ncbi.nlm.nih.gov/articles/PMC6094439
↑72. Kamal Z, Said AH, Ebnalwaled AA, et al. Genetic effects of chemically and biosynthesized titanium dioxide nanoparticles in vitro and in vivo of female rats and their fetuses. Front Vet Sci. 2023;10. https://doi.org/10.3389/FVETS.2023.1142305
↑73. Ivlieva AL, Petritskaya EN, Rogatkin DA, Zinicovscaia I, Yushin N, Grozdov D. Impact of Chronic Oral Administration of Gold Nanoparticles on Cognitive Abilities of Mice. Int J Mol Sci. 2023;24(10). https://doi.org/10.3390/IJMS24108962/S1
↑74. Saunders M. Transplacental transport of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(6):671-684. https://doi.org/10.1002/WNAN.53
↑75. Tsyganova NA, Khairullin RM, Terentyuk GS, et al. Penetration of pegylated gold nanoparticles through rat placental barrier. Bull Exp Biol Med. 2014;157(3):383-385. https://doi.org/10.1007/S10517-014-2572-3/METRICS
↑76. Luo J, Zhang M, Deng Y, et al. Copper nanoparticles lead to reproductive dysfunction by affecting key enzymes of ovarian hormone synthesis and metabolism in female rats. Ecotoxicol Environ Saf. 2023;254. https://doi.org/10.1016/J.ECOENV.2023.114704
↑77. Sakahashi Y, Higashisaka K, Isaka R, et al. Silver nanoparticles suppress forskolin-induced syncytialization in BeWo cells. Nanotoxicology. 2022;16(9-10):883-894. https://doi.org/10.1080/17435390.2022.2162994
↑78. Zhang S, Meng P, Cheng S, et al. Pregnancy exposure to carbon black nanoparticles induced neurobehavioral deficits that are associated with altered m6A modification in offspring. Neurotoxicology. 2020;81:40-50. https://doi.org/10.1016/J.NEURO.2020.07.004
↑79. Lee J, Yu WJ, Song J, et al. Developmental toxicity of intravenously injected zinc oxide nanoparticles in rats. Arch Pharm Res. 2016;39(12):1682-1692. https://doi.org/10.1007/S12272-016-0767-Z/METRICS
↑80. Hsieh MS, Shiao NH, Chan WH. Cytotoxic Effects of CdSe Quantum Dots on Maturation of Mouse Oocytes, Fertilization, and Fetal Development. Int J Mol Sci. 2009;10(5):2122. https://doi.org/10.3390/IJMS10052122
↑81. Madugulla L, Ravula AR, Kondapi AK, Yenugu S. Evaluation of the reproductive toxicity of antiretroviral drug loaded lactoferrin nanoparticles. Syst Biol Reprod Med. 2019;65(3):205-213. https://doi.org/10.1080/19396368.2018.1519047
↑82. Le Bras A. Evaluation of lipid nanoparticles for safe and efficient RNA delivery during pregnancy. Lab Animal 2024 53:5. 2024;53(5):112-112. https://doi.org/10.1038/s41684-024-01374-7