Влияние фозиноприла, амлодипина и метопролола на обратное развитие процессов ремоделирования органовмишеней у больных артериальной гипертонией

А.Л. Хохлов¹, М.И. Шуникова¹, А.Ю. Соснин²

1 — Ярославская государственная медицинская академия

2 — МУЗ КБ №2 г. Ярославля

Сердечно-сосудистые заболевания являются одной из основных причин смертности. Среди болезней системы кровообращения артериальная гипертония (АГ) занимает ведущее место. Ее распространенность в мире в настоящее время достигает 26% и, несмотря на все усилия по профилактике и лечению, эксперты отмечают тенденцию к дальнейшему росту. По данным эпидемиологического исследования в России среди взрослого населения АГ страдают 37,2% мужчин и 40,4% женщин [5].

Пути развития подходов к эффективному лечению АГ развивались параллельно доминирующему мнению о ведущих механизмах развития АГ. На первом этапе наибольшее значение придавалось собственно снижению АД, что стало основой для формирования и развития концепции «целевого АД» [7]. В настоящее время представляет интерес изучение не только гипотензивной, но также органопротективной активности антигипертензивных препаратов [3]. Доказано, что появление структурных и функциональных изменений в миокарде, ремоделирование сосудистой стенки у больных артериальной гипертонией увеличивает риск развития сердечно-сосудистых осложнений [6, 8]. Кроме того, наличие АГ связывают с появлением функциональных нарушений вазодилатационных свойств эндотелия, что в свою очередь препятствует реализации защитных механизмов сосудистой стенки от патологической перестройки с последующим развитием атеросклероза [4]. В оценке эффективности и безопасности лечения артериальной гипертонии большое значение имеют изменения, происходящие в почках. Между тем, начальные этапы поражения почек при АГ остаются малоизученными. Решающее значение в этом процессе играет нарушение ауторегуляции внутрипочечной гемодинамики, влекущие за собой развитие фиброза и атеросклероза почечных клубочков [2].

Таким образом, при выборе лекарственного препарата для лечения $A\Gamma$ важно учитывать влияние антигипертензивных средств на структурные изменения в сердце и сосудах, функциональное состояние эндотелия и почек.

Цель исследования

Дать сравнительную оценку влияния терапии фозиноприлом, амлодипином и метопрололом на обратное развитие процессов ремоделирования органов-мишеней у больных артериальной гипертонией.

Материалы и методы

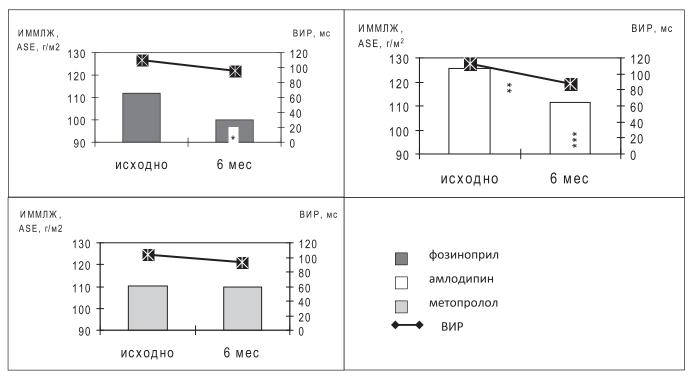
Результаты работы основаны на данных комплексного обследования 81 пациента с диагнозом артериальной гипертонии I-II степени. Больные были рандомизированы на три группы по 27 человек. Первая группа (I) в качестве антигипертензивной терапии получала фозиноприл (Моноприл, «Bristol Mayers», Италия) в стартовой дозе 10 мг/сутки; вторая группа (ІІ) — амлодипин (Тенокс «КRKA», Словения) 5мг/сутки, третья (III) — метопролола тартрат (Метокард, «Polpharma», Польша) в дозе 50 мг/сутки. В случае если монотерапия была недостаточно эффективной, в каждой из групп добавлялся диуретик (гипотиазид 12,5 мг/сут или индапамид 2,5 мг/сут). Средний возраст пациентов I группы составил 51,55±8,47 лет, II группы — $54,11\pm9,02$ года, III — $52,22\pm6,72$ лет. По длительности заболевания пациенты распределились следующим образом (Ме, 25%; 75%): I группа — 6 (3; 15) лет, II группа — 6 (3; 20)

лет, III группа — 7 (4; 15) лет. Период наблюдения составил 6 месяцев. Исходно и через 6 месяцев выполнялось суточное мониторирование АД (СМАД), эхокардиография, дуплексное сканирование артерий почек, проводился расчет скорости клубочковой фильтрации (СКФ) по формуле Сосkroft-Gault. Для оценки функции эндотелия проводилась проба с реактивной гиперемией и нитроглицерином по методике Сеlermajer D.S. в модификации Ивановой О.В. [4]. При проведении клинико-экономического анализа рассчитывали показатель «затраты-эффективность».

Все вычисления производились на персональном компьютере с использованием пакета программ Statistica 6.0 и БИОСТАТИСТИКА в Windows. Оценивали характер распределения по W критерию Шапиро-Уилка. Использовались непараметрические методы статистики (критерий Вилкоксона), при сравнении частот — критерий χ^2 , оценку межгрупповых различий осуществляли с помощью дисперсионного анализа и по методу Краскела-Уоллиса. Проводился корреляционный анализ (метод Спирмена). Различия считали достоверными при p<0,05. Во избежание ошибки при множественных

сравнениях применялась поправка Бонферрони. Статистически обработанные данные представлены в виде Ме (25%; 75%), где Ме — медиана, (25%; 75%) — 25-й и 75-й процентили.

Результаты и их обсуждение


По основному терапевтическому эффекту исследуемые антигипертензивные программы были сопоставимы. «Целевого» уровня АД на фоне лечения достигли 74,1% (20/27) человек в первой группе, 73,1% (19/26) — во второй, 74,1% (20/27) человек в третьей группе. Средняя суточная доза фозиноприла при этом составила $17,4\pm6,6$ мг, амлодипина — $7,0\pm2,8$ мг, метопролола — $88,9\pm46,7$ мг. Комбинированная терапия использовалась у 40,7% (11/27), 46,1% (12/26) и 44,4% (12/27) пациентов соответственно.

Одна пациентка из группы амлодипина была исключена из исследования по причине возникновения побочного эффекта (частая желудочковая экстрасистолия). В динамике по результатам СМАД отмечалось равномерное снижение САД и ДАД во всех группах (табл. 1).

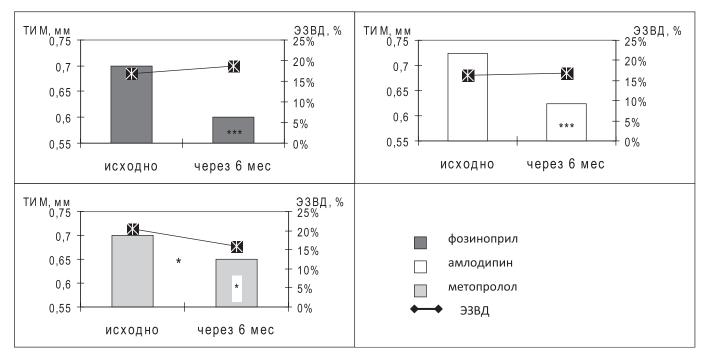
Таблица 1 Динамика показателей мониторирования АД и ЧСС на фоне терапии фозиноприлом, амлодипином, метопрололом

Показатель	Период исследова-	р межгр	Фозиноприл		Амлодипин		Метопролол	
			Me,	Δ,%	Me,	Δ,%	Me,	Δ,%
	ния		(25%; 75%)		(25%; 75%)		(25%; 75%)	
САД	исходно	0,582	148,0	***	148,5	***	144,0	***
день			(138,0; 160,0)		(136,0; 156,0)		(135,0; 151,0)	
	6 мес	0,148	132,0	-10,8	137,0	-7,7	136,9	-4,9
			(123,4; 141,0)	,-	(131,0; 147,0)	.,.	(131,2; 140,0)	1,5
ДАД	исходно	0,372	92,0	***	91,5	***	89,0	***
день			(86,0; 100,0)		(88,0; 95,0)		(85,0; 95,0)	
	6 мес	0,128	82,0	-10,9	86,0	-6,0	84,0	-5,6
			(78,0; 88,9)	.,-	(83,0; 89,0)	.,.	(81,0; 89,7)	, , ,
ЧСС	исходно	0,946	77,0	**	75,0		77,0	***
день			(69,0; 83,0)		(72,0; 82,0)	1,3	(70,0; 83,0)	
	6 мес	0,017	72,0	-6,5	76,0		67,0	-13,0
			(66,0; 79,0)	ĺ	(72,0; 81,0)		(63,0; 78,0)	ĺ
САД	исходно	0,052	126,0	***	128,0	***	120,0	**
ночь			(118,0; 132,0)		(120,0; 142,0)		(115,0; 132,0)	
	6 мес	0,042	114,0	-9,5	121,0	-5,5	116,8	-2,6
			(106,0; 124,0)	Í	(117,0; 130,0)	Í	(114,0; 124,0)	
ДАД	исходно	0,014	76,0	***	78,0	*	71,0	
ночь			(66,0; 80,0)		(75,0; 81,0)		(67,0; 76,0)	0
	6 мес	0,019	69,0	-9,2	74,0	-5,1	71,0	
			(62,0; 76,0)	,	(71,0; 81,0)	,	(66,0; 76,4)	
ЧСС	исходно	0,363	60,0	**	65,5		66,0	***
ночь			(58,0; 68,0)		(59,0; 70,0)	-0,8	(58,0; 70,0)	
	6 мес	0,011	58,0	-3,3	65,0		60,0	-9,1
			(55,0; 65,3)	,,,	(61,0; 68,0)		(55,3; 68,5)	

Примечание. * — p < 0.05; ** — p < 0.01; *** — p < 0.001 при оценке динамики внутри групп. Достоверность межгрупповых различий приведена в таблице

Рис. 1. Влияние терапии фозиноприлом, амлодипином, метопрололом на массу миокарда и диастолическую функцию ЛЖ

Примечание. * - p<0,05; ** - p<0,01; *** - p<0,001 при оценке динамики внутри групп. ИММЛЖ, ASE, г/м² - индекс массы миокарда левого желудочка, ВИР, мс - время изоволюмического расслабления левого желудочка. p>0,05 при сравнении между группами


Наиболее выраженное уменьшение ЧСС в нашем исследовании наблюдалось в группе метопролола (Δ ЧСС $_{\rm день}$ =-13%, p<0,001; Δ ЧСС $_{\rm ночь}$ =-9,1%, p<0,001). В группе фозиноприла также имело место небольшое снижение ЧСС (Δ ЧСС $_{\rm день}$ =-6,5%, p=0,006; Δ ЧСС $_{\rm ночь}$ =-3,3%, p=0,01). В группе, получающей амлодипин, в динамике не было получено статистически значимых изменений этого показателя.

Признаки гипертрофии миокарда были зарегистрированы у 54,3% (44/81) больных: в І группе у 48,1% (13/27), во ІІ группе у 63% (17/27), в ІІІ группе у 51,8% (14/27) (p=0,829, критерий χ^2). При проведении корреляционного анализа выявлено наличие положительной корреляционной связи между индексом массы миокарда ЛЖ и рядом показателей: возрастом (r=0,29, p=0,0087), индексом времени САД днем (r=0,22, p=0,045), вариабельностью САД днем (ВарСАД) (r=0,24, p=0,031) и уровнем пульсового АД (ПАД) (r=0.35, p=0.001). Следует также указать, что зафиксирована прямая корреляционная связь между этими же показателями и толщиной интимо-медиального комплекса (ТИМ) сонных артерий. Коэффициент корреляции между ТИМ и возрастом составил r=0.60, p<0.001; ТИМ и ВарСАД днем — r=0,33, p=0,0026; ТИМ и $\Pi A \Pi - r = 0.38$, p=0.0006.

Наибольший эффект в отношении регресса ГЛЖ по нашим данным имеют амлодипин и фозиноприл (рис. 1).

На фоне терапии метопрололом изменения массы миокарда не достигли уровня статистической значимости. Между индексом массы миокарда (ИММЛЖ) и временем изоволюмического расслабления (ВИР) (показателем, характеризующим диастолическую функцию миокарда) существует стойкая прямая корреляционная связь: исходно r=0.33, p=0.0024, через 6 месяцев лечения r=0.35, р=0,0016. Сообразно с уменьшением выраженности ГЛЖ происходило улучшение диастолической функции ЛЖ: максимальному эффекту в отношении обратного развития процессов ремоделирования миокарда в группе амлодипина $(\Delta ИММЛЖ_{II} = -11,0\%, p < 0,001)$ соответствовало наиболее выраженное уменьшении ВИР (ДВИР =-21,4%, p<0,01).

При оценке состояния сосудов было выявлено наличие обратной корреляционной связи между толщиной интимо-медиального комплекса (ТИМ) и величиной эндотелийзависимой вазодилатации (ЭЗВД) (r=-0,29, p=0,008). Наиболее предпочтительным в отношении сосудистого ремоделирования оказался фозиноприл за счет более выраженного снижения толщины интимо-медиального ком-

Рис. 2. Влияние терапии фозиноприлом, амлодипином, метопрололом на структурное и функциональное состояние сосудов

Примечание. * - p<0,05; *** - p<0,001 при оценке динамики внутри групп. p>0,05 при сравнении между группами. ТИМ - толщина интимо-медиального комплекса, ЭЗВД - эндотелийзависимая вазодилатация.

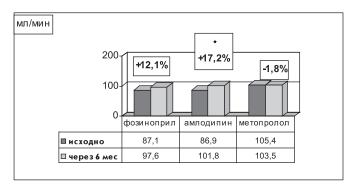


Рис. 3. Динамика периферического сопротивления кровотоку по почечным артериям на фоне терапии фозиноприлом, амлодипином, метопрололом

Примечание. *- p < 0.05, ** - p < 0.01 при оценке динамики внутри групп. RI — индекс циркуляторного напряжения

Рис. 4. Влияние терапии фозиноприлом, амлодипином, метопрололом на скорость клубочковой фильтрации

Примечание. * — p<0,01 при оценке динамики внутри групп. p>0,05 при сравнении между группами.

плекса (ТИМ) сонных артерий (Δ ТИМ $_{\rm I}$ =-14,3%, p<0,001) и позитивного влияния на эндотелиальную функцию (Δ ЭЗВД $_{\rm I}$ =+10,1%, p=0,41) (рис. 2). Амлодипин и метопролол оказывали меньший по сравнению с фозиноприлом эффект на гипертрофию сосудистой стенки (Δ ТИМ $_{\rm III}$ =-13,8%, p<0,001 и Δ ТИМ $_{\rm III}$ =-7,1%%, p=0,015). Эндотелиальная функция на фоне терапии амлодипином изменилась незначительно (Δ ЭЗВД $_{\rm III}$ =+4,3%, p=0,75), в группе метопролола выявлено отрицательное влияние (Δ ЭЗВД $_{\rm III}$ =-22,3%, p=0,01).

У больных артериальной гипертонией в доклинической стадии нефропатии может регистрироваться повышенная резистентность внутрипочечных артерий (RI) [1]. На фоне терапии фозиноприлом RI уменьшается на всех уровнях, причем статистически значимо в дистальных отделах $(\Delta RI_{\text{сегм.}} = -3,1\%, p=0,015)$, что свидетельствует о позитивном влиянии лечения на почечную гемодинамику (рис. 3). Терапия амлодипином также способствовала улучшению почечного кровотока, но уступала фозиноприлу по выраженности эффекта. Между тем, до начала лечения в группе амлодипина регистрировался более высокий по сравнению с группой метопролола показатель периферического сопротивления кровотоку в устьях почечных артерий. На фоне терапии метопрололом отмечалось некоторое увеличение периферического сопротивления, статистически значимо в устье почечных артерий ($\Delta RI_{yстье.}$ =+2,4%, p=0.027).

При проведении сравнения групп по скорости клубочковой фильтрации до и после лечения различий получено не было: до лечения p=0,157, через 6 месяцев лечения p=0,601 (метод Краскела-Уоллиса). Внутри каждой из групп имели место следующие изменения: в группе фозиноприла СКФ возросла на 12,1% (p=0,079), в группе амлодипина на 17,2% (p=0,006), в группе метопролола снизилась на 1,8% (p=0,211) (рис. 4).

Результаты, полученные в нашей работе, позволяют сделать вывод о наличии у исследуемых препаратов дополнительных терапевтических эффектов помимо снижения уровня АД, которые нужно учитывать при назначении терапии. Наличие симптомов, в отношении которых выявлено положительное влияние той или иной фармакологической группы антигипертензивных препаратов у конкретного пациента, могут расцениваться как добавочные показания к их использованию.

Выводы

- Терапия фозиноприлом (Моноприлом), амлодипином (Теноксом) и метопрололом (Метокардом) артериальной гипертонии I-II степени, I-II стадии на протяжении 6 месяцев не отличалась по степени снижения среднесуточных показателей артериального давления. Целевого уровня АД в первой группе достигли 74,1% пациентов, во второй 73,1%, в третьей группе 74,1%.
- Амлодипин и фозиноприл в отличие от метопролола обладали кардиопротективным действием: индекс массы миокарда левого желудочка снизился на 11,0% и 10,8% соответственно. Фозиноприл, амлодипин и в меньшей степени метопролол уменьшали толщину интима-медиального комплекса сонных артерий (на 14,3%, 13,8% и 7,1%).
- Фозиноприл обладал более выраженным нефропротективным действием в виде уменьшения периферического сопротивления внутрипочечному кровотоку. Амлодипин так же оказывал благоприятный эффект на почечную гемодинамику, но несколько уступал фозиноприлу по выраженности эффекта, увеличивал скорость клубочковой фильтрации.

Литература

- Карпов Р.С., Кошельская О.А., Ефимова Е.В., Врублевский А.В., Суслова Т.Е., Макарова Е.В. Особенности внутрипочечного кровотока у больных сахарным диабетом 2 типа и артериальной гипертонией в доклинической стадии нефроангиопатии // Сахарный диабет. 2001. №3. Доступ: http://www.diabet.ru/Sdiabet/2001-03/2001-3-08.htm
- 2. *Кобалава Ж.Д., Виллевальде С.В., Моисеев В.С.* Значение различных методов оценки функционального состояния почек для стратификации сердечно-сосудистого риска // Кардиология. 2007. Т. 47, №12. С. 74-80.
- 3. Леонова М.В., Демидова М.А., Тарасов А.В., Белоусов Ю.Б. Опыт применения спираприла и его эффекты у больных с артериальной гипертензией // Российский кардиологический журнал. 2006. №1. С.47-50.
- Небиеридзе Д.В. Клиническое значение дисфункции эндотелия при артериальной гипертонии // Системные гипертензии Приложение
 к Consilium medicum. 2005. Т. 7, №1. С. 31-38.
- 5. *Шальнова С.А., Баланова Ю.А., Константинов В.В. и др.* Артериальная гипертония: распространенность, осведомленность, прием антигипертензивных препаратов и эффективность лечения среди населения Российской Федерации // Российский Кардиологический Журнал. 2006. № 60. С. 45-50.
- 6. Bots ML, Hoes AW, Koudstaal PJ et al. Common carotid intima-media thickness and risk of stroke and myocardial infarction. The Rotterdam Study // Circulation. 1997. Vol. 96. P.1432—1437.
- 7. Kannel W., Wolf P., McGee D. Et al. Systolic blood pressure, arterial rigidity, and risk of stroke: the Framingham Study // J. Am. Med. Assoc. 1981. Vol. 245. P. 1225-1229.
- 8. Zanchetti A, Bond MG, Henning M et al. Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: Principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial // Circulation. 2002. Vol. 106. P. 2422—2427.